GRB detection and studies with THESEUS

G. Ghirlanda
INAF-Oss. Astr. Brera
& R. Salvaterra
INAF-IASF Milano
+
WG4

Most in WG4 white paper to appear in Exp. Astron. THESEUS special issue

1) How many GRBs will THESEUS detect?
2) What GRB Science (+ main science drivers)?
Building blocks of GRB populations

\[N(P_1 < P < P_2) \propto A \int_0^\infty dz \frac{dV(z)}{dz} \frac{\Psi(z)}{1+z} \int_{L(P_1,z,P_{min})}^{L(P_2,z)} \phi(L) dL \]

GRB formation rate (GRBFR)

short GRBs: BNS, BHNS merger (delay with respect to SFR)

long GRBs: associated to SNIb/c (low Z and then SFR)

Model assumptions [GRBFR + LF]

Instrumental biases

LGRBs: Ghirlanda et al. 2015

SGRBs: Ghirlanda et al. 2016

New mission

Detectable sample (science case study)
THESEUS expected detections

Model assumptions
[GRBFR + LF]

GRB Universe

Detectable sample (science case study)

Long GRB afterglows @ z>6

MOS
J. Larranaga
A possible realisation of the THESEUS long GRB sample

Need
1) prompt emission spectrum
2) redshift

Study the cosmological properties of the GRB population (e.g. evolution)

Explore the low luminosity end of the LF

Existence and nature of XRF
The nature of the radiative process

Observations: e.g. Preece et al. 1998; Ghirlanda et al. 2002; Kaneko et al. 2006; Frontera et al. 2006; Vianello et al. 2008; Gruber et al. 2014
Theory: e.g. Sari, Narayan & Piran 1996; Daigne et al. 2012; ... Ghisellini et al. 2000;
The nature of the prompt emission

Oganesyan et al. 2017: 14 bright GRBs detected by Swift

Oganesyan et al. 2017a: 34 GRBs detected by Swift

Oganesyan et al. 2018: extension to optical

Fermi/GBM:
- Short and long Fermi GRBs
 (Ravasio+2019) Short Ep ~ Eb
- Synchrotron fits: Bayesian analysis
 (Burgess+2019)

The nature of the prompt emission

Infer:
- $B, \gamma_m, p, N_e \ldots$

Break distribution currently sparsely sampled (Toffano+2021)
The nature of the prompt emission

Simulations by M. Toffano (PhD Insubria)

Assume a 2break spectrum
break & peak \leftrightarrow flux

Dotted lines = input values

SXI: disentangle intrinsic from extrinsic curvature

THESEUS: trace the break for $>80\%$ of the XGIS detections
The close ambient: hints on the progenitor

GRB 990507 as seen by THESEUS

\(\sigma_z \) and \(\sigma_{\text{Fe}/\text{Fe}_\odot} \sim 5\%

Possible hints of the progenitors' explosive nucleosynthesis

GRB 990507 (Amati+2000)

\(z = 0.86 \pm 0.17 \)

\(\text{Fe}/\text{Fe}_\odot \sim 75 \pm 19 \)

\(\sigma_z \) and \(\sigma_{\text{Fe}/\text{Fe}_\odot} \sim 20 - 25\% \)
On the nature of the prompt emission dissipation

Simulations by C. Guidorzi

GRB 990510

2-26 keV

Counts / 64 ms

Time since onset [s]

25-2000 keV

Leahy Power

Frequency [Hz]

7.2^{+1.7}_{-1.4} \times 10^{-2} \, Hz

0.14 \pm 0.03 \, Hz
The nature of the early X-ray emission phase

Oganesyan+2020

Steep decay:
High latitude emission from switch off of the prompt emission

Plateau: energy injection in the FS, delayed afterglow emission, two phase structured jet etc.

Ascenzi+2021

Structured jet
The nature of the early X-ray emission phase

Ronchini+2021: spectral evolution can reveal the physical nature of the early X-ray emission

THESEUS can monitor it (with the unique extension of XGIS)
Conclusions

• Population studies to estimate GRB detection rates by THESEUS (x 20 current sample of GRBs @ z>6 … stay connected)

• GRB prompt emission: characterise the low energy shape of the spectrum (break and/or thermal component) to infer
 1) nature of the radiative process(es)
 2) jet energy content
 3) Emission region physical properties for >80% of the events

• Study the progenitors through metal absorption signatures

• Understand the nature of the dissipation mechanism through variability studies over unprecedented wide energy range

• Unveil the origin of the steep-plateau emission phases

WG4 white paper on Exp. Astron THESEUS special issue