The future of the redshift estimation of GRBs

István I. Rácz

With the contribution of Z. Bagoly, I. Csabai, I. Horváth, L. G. Balázs, L. V. Tóth, S. Pinter

THESEUS CONFERENCE 2021
Outline

Spatial distribution of GRBs

Redshift measurements

Machine learning for redshift estimation

Summary
Spatial distribution of GRBs

Are the spatial distribution of GRBs homogeneous and isotropic?

Giant GRB ring at $z \approx 0.8$ (Balázs et al., 2015 and 2018)
- from 21 GRBs with redshift between 0.78 and 0.86
- 9 GRBs form a 1.72 Gpc diameter ring-like structure
Two types of redshifts:
- Spectroscopic: accurate, longer measurement
- Photometric: easier measurement, bigger uncertainty

Number of measurements:
- Spectroscopic: ≈ 500
- Photometric: ≈ 100

Positions errors of different instruments (i.e.):
- Fermi GBM: few degrees
- Swift BAT: few arcmins

The exact source is difficult to identify for the ground-based follow-up observations
Redshift measurements

Afterglow

Afterglows’ time evolution:

- X-Ray
- UV and optical, i.e. Swift – UVOT
- IR, i.e. Theseus – IRT (see Poster by L. G. Balazs)
- Radio

Lyman limit at 912Å is almost completely absorbed

Lyman-break shifting (’detection limit’):

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Wavelength range</th>
<th>Redshift</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>0.1 – 0.4(\mu m)</td>
<td>2 – 3</td>
</tr>
<tr>
<td>Optical</td>
<td>0.4 – 0.7(\mu m)</td>
<td>3 – 7</td>
</tr>
<tr>
<td>NIR</td>
<td>0.7 – 2.5(\mu m)</td>
<td>7 – 26</td>
</tr>
<tr>
<td>MID</td>
<td>2.5 – 20(\mu m)</td>
<td>26 →</td>
</tr>
</tbody>
</table>
Swift GRB Statistics:

- 1443 GRBs detected
- 1168 X-Ray (XRT) measurements
- 454 UVOT measurements

The frequency of redshift detections of Swift GRBs (spring of 2020):

- 1346 Swift GRBs
- 408 ground-based spectroscopic redshift measurements
- From which only 22 did not have UVOT detections (under 6%)

Precise localizations \Rightarrow spectroscopic redshift measurements
Redshift measurements
Changing over time

The regressive tendency is clearly seen from the peak after the launching of Swift. In a few years redshift measurements will be made for only a few GRBs every year (see Poster by I. Horvath).
Measured physical parameters depend on distance, but the impact
- is relatively smaller than the GRB’s own variability
- is a complex mechanism
- is hard to specify with simple statistical methods

Machine learning may help amplifying the underlying subtle relations between the observed physical parameters and the distance.

We used two procedures:
- Random Forests
- Gradient Boosted Trees (XGBoost)
Machine learning for redshift estimation

Data

Data & Catalogs:
- Swift GRB Catalog
- UKSSDC catalog
- Own redshift catalog, data tables (i.e Jochen Greiner GRBs’ table), GCN reports, other found publications

We selected 20 parameters:
- γ-flux
- X-ray fluxes (early, 11hours, 24hours)
- UVOT parameters
- $N(H)_{\text{intrinsic}}$ (both of WT and PC observation mode)

Similar parameters will be available for Theseus (IRT is essential)
The correlation coefficient was 0.759±0.008 (Racz et al., 2017).
Besides the distance estimation we could separate GRBs into distance ranges.

From the classification we obtained that it is possible to distinguish the $z<4$ and $z>4$ GRBs with an almost 90% goodness of estimation.

We classified the GRBs without measured redshift and we found that the group with $z<4$ contains comparable numbers of GRBs with known and unknown redshifts. In the high-z case three times more unmeasured GRBs were found than measured. This can imply that the distance of GRBs above a given value can strongly reduce the measurement of redshifts.

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>$z < 4$</th>
<th>$z \geq 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured (real)</td>
<td>231</td>
<td>22</td>
</tr>
<tr>
<td>Predicted (known)</td>
<td>195</td>
<td>58</td>
</tr>
<tr>
<td>Predicted (unknown)</td>
<td>242</td>
<td>152</td>
</tr>
</tbody>
</table>
The distribution of high-z GRBs. It is shown that there are three times more high-z GRBs in the population of objects with unmeasured redshifts. (Racz et al., in prep.)
Position determination from high precision observation is essential

Lyman-break cutoff, Optical: $z \approx 5$, NIR: $z \approx 10$

The number of ground-based redshift measurements are decreasing year by year

Theseus IRT will be a good solution

We obtained promising results for redshift estimation by machine learning

It is possible to distinguish the $z<4$ and $z>4$ GRBs with an almost 90% goodness of classification
Thank you for your attention!

- Breiman L., 2001, Machine Learning, 45, 5
- Racz, I. I. et al., 2017, PoS(IFS2017),079
- Racz, I. I. et al., 2021, in prep