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Accretion disk and corona in accreting black holes

Stellar mass BH
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| will focus on the stellar mass BH systems for two reasons:
e Clear view of the inner disk + corona in one spectrum, with no mysterious soft X-ray excess!
 We can study >10 decades of system time-scales, from outer viscous to inner disk light-travel times



What is the corona?

Physical properties - what we

know:

* Predominantly thermal (in
hard states)

* Weaker non-thermal-like
component may appear > 100
keV

e Optically thick-ish (t~1)

* Has some vertical extent
above the disk

memam  \What we don’t know:
* Geometry, geometry,
geometry...
* Energy content (B-field?
Protons?)



Seed photons and energy budget
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Observed X-ray spectra imply strong

evolution of seed-to-heating luminosity ratio

during outburst:

* Change in disk truncation radius?

* Local redistribution of accretion power
disk/corona?

 Change in geometry (corona ‘sees’ more
disk?)
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Coronal geometry from reflection

* No strong consensus except that reflection spectra
generally indicate hard state disk inner radii < 100 R,
* |ISCO-like radii are in tension with X-ray reverberation

measurements
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MAXI J1820+070 with NuSTAR
(Buisson et al. 2019,
see also Zdziarski et al. 2021)

Wang, J. et al. 2020




Disk-corona interactions

S - Coronal photons can
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Hard lags & Comptonization delays
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If hard lags due to Comptonisation, (ongoing studies, \

coronal scales > hundreds of R,. Tension by Reig, Kylafis,
with reflection measurements?
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Various models:
Kotov et al. 2001, Arévalo & Uttley 2006, Ingram & Done 2012,
Rapisarda et al. 2016, Mahmoud & Done 2018

Large time lags can be
produced by mass
accretion fluctuations
propagating through a
coronal ‘hot flow” with
radially dependent
Comptonised spectral
shape



Extending lags to soft X-rays with XMM-Newton:

the disk leads the corona

Variability spectra (covariance)

¢ . medium vs. soft
o hard vs. medium
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(Wilkinson & Uttley 2009) (Uttley et al. 2011)



Fluctuations propagating through the disk
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This simple picture can explain why disk variations lead those of the corona, but it
cannot (on its own) explain the energy-dependent lags between power-law photons.



Short time-scales: disk lags the corona

(Uttley et al. 2011)

Reverberation mapping
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By analogy with AGN X-ray reverberation, we assumed that the disk lags correspond
to light-travel delays from corona to disk



NICER: a window to Athena
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Fe K reverberation with NICER and Athena

NICER data Athena (WFI) simulation

MAXI j1820+070
~ 2 Crab
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Kara et al. 2019



Evolution of disk lags in MAXI J1820+070

(Kara et al. 2019)

corona
evolves
with time

Disk lags increase (and move to longer time-
scales) but ‘core’ reflection remains broadly
similar: change in coronal height?
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Disk-corona interactions

Coronal photons can
be reprocessed by disk
(reflection/thermal
reverberation)

Disk provides ___
‘seed’ photons ."‘-.~ .
corona ~ Accretion flow:

~ * M (plasma density,

-

* B-field(?)

We should also account for the seed photon variations!

. accretion power)

~com



Accounting for seed photon var|ab|I|ty (Uttley & Malzac, in prep.)
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Interpreting the ‘soft’ (disk) lags

The blackbody lags are relative to Assuming zero intrinsic reverberation
seed variations rather than lag relative to coronal heating:
coronal heating — depend on
propagation delays and coronal
geometry, not just light-travel
time.
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Flux at Eseeq ; L Note: lags produced (assuming radial propagation

time-scales are 1000 x Keplerian time) are really large!
Propagating fluctuations must be even faster than this.
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Summary

e Coronae couple to the accretion flow in complex ways: soft X-ray
spectral-timing coverage is crucial to understanding how! Athena will
dramatically improve S/N for these studies and push to fainter
sources.

* Accounting for the known disk variability (direct blackbody, seed
photons and accretion power heating the corona) can explain a large
number of observed spectral-timing properties

* Heating vs seed photon delays are hard to avoid and imply compact
coronae unless the coronae have substantial internal seed photons

* It is still unclear whether coronal ‘hot flows’ exist or have large extent



