SMBH winds under the magnifying glass of WINE

Alfredo Luminari

INAF - Astronomical Observatory of Rome (OAR)/IAPS

alfredo.luminari@inaf.it

In collaboration with:

E. Piconcelli, F.Nicastro, L. Zappacosta and all the AGN group @ OAR, F. Tombesi (UNI-ToV)

SMBH winds under the magnifying glass of WINE

Outline

- i. X-ray Ultra-Fast Outflows in AGNs
- ii. The WINE spectroscopic model
- iii. WINE absorption/emission profiles
- iv. P-Cygni profiles with XRISM and Athena

i. X-ray Ultra –Fast Outflows in AGNs

i. X-ray Ultra –Fast Outflows in AGNs

ii. The WINE spectroscopic model

Current approach

- Spectral analysis is done mainly through simulated absorption/emission spectra, using radiative transfer codes borrowed from different astrophysical settings (e.g. Cloudy, XSTAR)
- ii. Simulated spectra rely on several assumptions on the **geometry** and the **kinematics** of the **wind**
- iii. The wind is modeled as a layer of gas at rest with turbulent broadened features, which are a posteriori blue-shifted to account for the wind velocity smearing

WINE model

Winds in the Ionised Nuclear Environment

- WINE is a self-consistent model for absorption and emission from disk winds. It is highly customizable and can mimic different launching scenarios.
- ii. The physical, kinematical and geometrical parameters are determined fitting the model to the observed spectra and minimizing the χ^2 statistic
- iii. Relativistic effects are taken into account in the radiative transfer calculations. Absorption and emission profiles are directly built according to the geometry and velocity profiles.

ii. The WINE spectroscopic model

Parameters of the model:

- 1. Incident spectrum (SED and luminosity)
- 2. Ionization parameter $\xi(r)$
- 3. Column density N_H
- 4. Launching radius r_0
- 5. Density and velocity profiles:

$$n(r) = n_0 \left(\frac{r_0}{r}\right)^{\alpha}$$
, $v(r) = v_0 \left(\frac{r_0}{r}\right)^{\beta}$

5. Geometry of the source: θ_{out} , θ_{in} , i

Best-fit values are determined comparing the model with the data and minimizing the χ^2 statistic.

 $ightarrow {\it C_f}$, $\dot{\it M}_{out}$, $\dot{\it E}_{out}$ are determined self-consistently

ii a. Radiative transfer

ABSORPTION:

Chain of calls with the XSTAR code

Simulation is propagated from the innermost to the outermost shell to represent the wind evolution

ii a. Radiative transfer

ABSORPTION:

Chain of calls with the XSTAR code

Simulation is propagated from the innermost to the outermost shell to represent the wind evolution

EMISSION:

Calculate Monte Carlo emission profiles

Convolve emission profiles with *XSTAR* line emissivities

ii b. Relativistic effects

The cross section of a relativistic particle is enhanced frontward ($\theta=0~deg$) and reduced backward ($\theta=180~deg$):

reduced

Ψ as a function of β for different θ

enhanced

Isotropic cross section at rest Relativistic cross section

$$\psi^4 \equiv \frac{1}{\gamma^4 (1 - \beta \cos \theta)^4}$$

iii. WINE profiles

Emission:

iv. P-Cygni profiles with XRISM and Athena

→ *smoking guns* of the global outflow structure

BUT sometimes we observe them, some others not...

P-Cygni profiles with *WINE*

PDS456 (Nardini+15)

iv. P-Cygni profiles with XRISM and Athena

→ *smoking guns* of the global outflow structure

BUT sometimes we observe them, some others not...

P-Cygni profiles with *WINE*

iv. XRISM and Athena simulations

1000 simulations of the UFO in IZWicky1 with XRISM and Athena with $t_{\rm exp}=10^5-10^6~s$.

Two-step fitting:

iv. XRISM and Athena simulations

1000 simulations of the UFO in IZWicky1 with XRISM and Athena with $t_{\rm exp}=10^5-10^6~s.$

Two-step fitting:

iv. XRISM and Athena simulations

<u>Absorption:</u> well constrained with both XRISM and Athena for $t_{exp} = 2.5 - 5 \cdot 10^5 \ s$

Exposure time $(10^5 s)$

Emission:

XRISM: ok with $t_{exp} = 10^6 s$

Athena: ok with $t_{exp} = 5 \cdot 10^5 s$

(higher resolution and effective area)

Conclusions

The WINE model

- Constrain the physics and the geometry of the wind
- Derive \dot{M}_{out} , \dot{E}_{out} and estimate the impact on the galaxy
- Incorporates radiative transfer, Monte Carlo modellisation and special relativity

P-Cygni profiles

- Self-consistent, physical modelisation of the wind spectra
- XRISM, Athena will be able to constrain the wind emission

LOS r_0 θ_{in} θ_{out} Accretion disc L_{ion} SMBH Rear cone (obscured)

Future prospects

- Can be easily incorporated in spectral fitting programs (eg. Xspec)
- Public release of the WINE code at the end of 2021 (Luminari+21 in prep)
- > stay tuned! Comments, questions welcomed <u>alfredo.luminari@inaf.it</u>

References to WINE:

Luminari, Marinucci, in prep - Laurenti, Luminari+21 - Luminari+21,+20, +18