
Science results from Hitomi

Takaya Ohashi Tokyo Metropolitan University

Hitomi – "Eye" to the Universe

Structure and evolution of the Universe Matter in extreme environments

- Black holes
- Galaxies
- Heavy elements
- Non-thermal processes

International collaboration

Micro Calorimeter Array/ADR Two soft X-ray Telescopes **Eight Science Advisors** Pipeline Analysis

SRON & U. of Geneva

Filter Wheel/MXS for SXS

CEA/DSM/IRFU

Contribution to BGO Shield/ASIC test

ESA

Three Science Advisors Contribution to mission instruments (SXS/HXI/SGD/HXT) User support in Europe

CSA

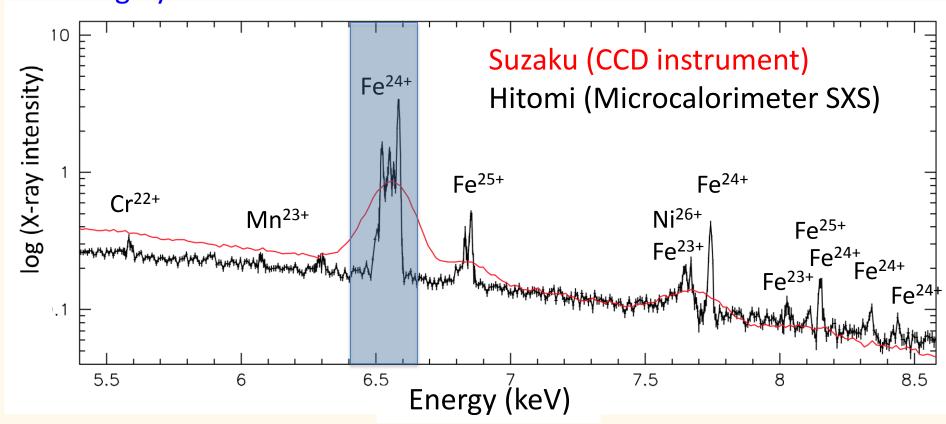
Metrology System

Launch on February 17, 17:45 JST, 2016

Science papers (I)

Target	Title	
Perseus	The quiescent intracluster medium in the core of the Perseus cluster	Nature 2016
Perseus	Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster	ApJ Lett 2017
Perseus	Solar abundance ratios of the iron-peak elements in the Perseus cluster	Nature 2017
Perseus	Atmospheric gas dynamics in the Perseus cluster observed with Hitomi	PASJ 2018
Perseus	Measurements of resonant scattering in the Perseus Cluster core with Hitomi SXS	PASJ 2018
Perseus	Temperature structure in the Perseus cluster core observed with Hitomi	PASJ 2018
Perseus	Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi	PASJ 2018
Perseus	Hitomi observation of radio galaxy NGC 1275: the first X-ray microcalorimeter spectroscopy of Fe-K $\!\alpha$ line emission from an active galactic nucleus	PASJ 2018

Science papers (II)

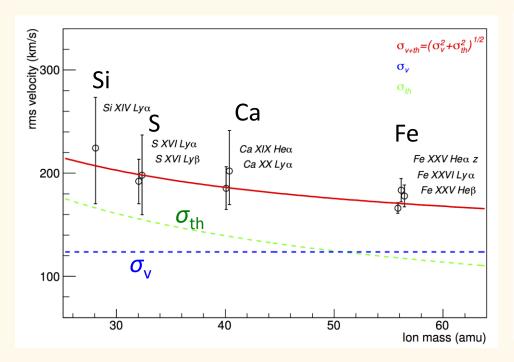

Target	Title	
N132D	Hitomi observations of the LMC SNR N132D: highly redshifted X-ray emission from iron ejecta	PASJ 2018
G21.5-0.9	Hitomi X-ray observation of the pulsar wind nebula G21.5-0.9	PASJ 2018
IGR J 16318-4848	Glimpse of the highly obscured HMXB IGR J16318-4848 with Hitomi	PASJ 2018
Crab	Search for thermal X-ray features from the Crab nebula with Hitomi soft X-ray spectrometer	PASJ 2018
Crab	Hitomi X-ray studies of giant radio pulses from the Crab pulsar	PASJ 2018
Crab	Detection of polarized gamma-ray emission from the Crab nebula with Hitomi Soft Gamma-ray Detector	PASJ submit
Perseus	Constraints on the Chemical Enrichment History of the Perseus Cluster of Galaxies from High-Resolution X-ray Spectroscopy	MN submit
Perseus	An X-ray spectroscopic search for dark matter and unidentified line signatures in the Perseus cluster with Hitomi	PASJ submit

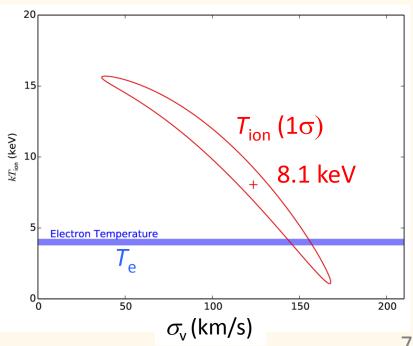
Hitomi papers in PASJ special issue are open access till September 30

Energy spectrum of the Perseus cluster

Thermal emission from a plasma of $4 \times 10^7 \text{ K} \Rightarrow \text{Lines from}$ highly ionized ions

Energy resolution of < 5 eV enables gas velocity measurement at \sim 10 km/s accuracy.

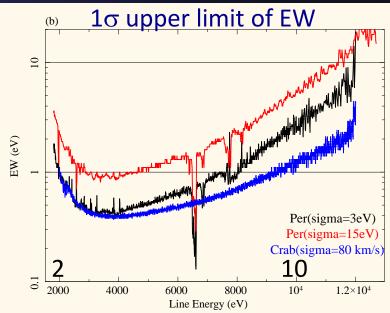

Constraint on ion temperature

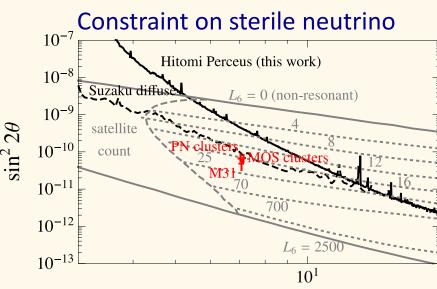


 Ion temperature is estimated from systematic variation of line width for different elements

$$S^2 = S_v^2 + S_{th}^2$$
; $S_{th}^2 = kT_{ton} / m_{ton}$

- Line width is obtained by fitting with continuum + gaussians
- $\sigma_{\rm v}$ = 123+31-45 km/s, $kT_{\rm ion}$ = 8.1+5.0-4.7 keV large error
- $T_{\rm ion}$ is consistent with $T_{\rm e}$ (4.0 keV) from the continuum spectrum

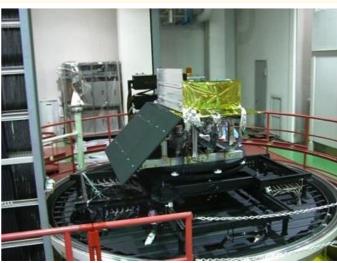

Search for unidentified lines

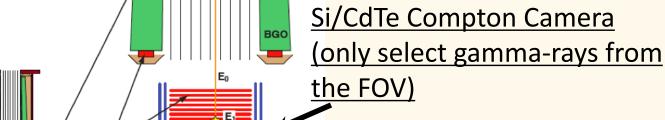


T. Tamura et al. 2018, submitted to PASJ

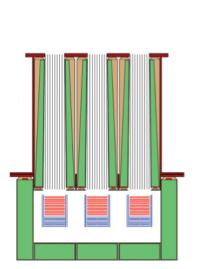
Perseus cluster spectrum:

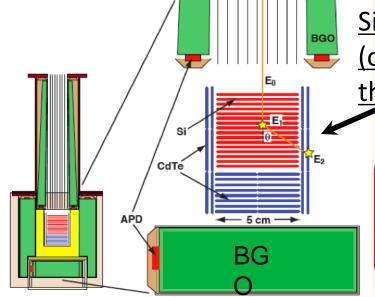
- Blind search of new lines is performed in 5 or 10 eV step.
- No significant new line is detected, considering the "look elsewhere" factor of 1600
- Decay rate of sterile neutrino is constrained with fine mass resolution in 4 – 24 keV.
- Possible atomic lines, not well modeled (such as CX), are marginally (2.5-3σ) detected.




Soft Gamma-ray detector

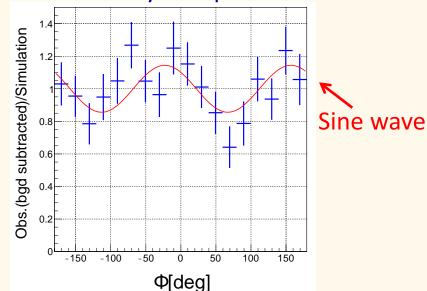
- Si/CdTe Compton Gamma Camera and Well-type shield to achieve ultimately low background. (40 - 600 keV)
- The Compton Camera enables us to measure polarization > 60 keV.
- GRB Monitoring using BGO shield.



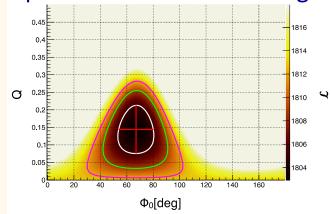


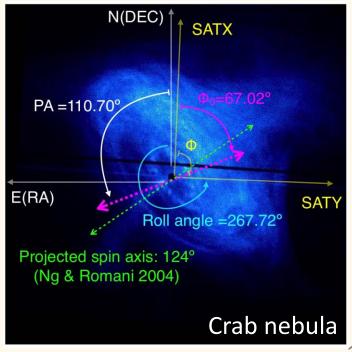
Compton Kinematics

$$\cos \theta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + E_2} \right)$$
 $E_{\text{in}} = E_1 + E_2$



Polarization study with SGD




- 5 ksec exposure on Crab Nebula
- Detector properties reproduced by GEANT4 simulation
- Polarization detected at 99.3% confidence
- Position angle 110.7 ± 13 deg, polarization fraction 22.1 ± 10.6%, consistent with previous results

Data divided by non-polari simulation

Amplitude vs Polarization angle

Summary

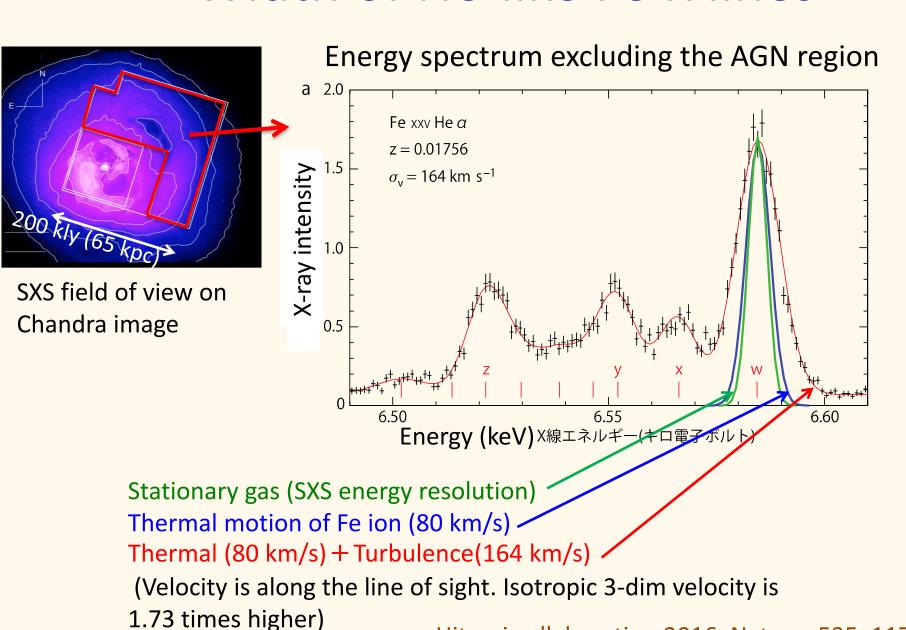
- Hitomi has really opened the door to new science with high resolution X-ray spectroscopy
- We should be proud of the good function of all the instruments on-board Hitomi
- Even the mission itself has a short life, long international collaboration on the spacecraft production and discussion on science have made a strong team
- XRISM will fulfill the spectroscopy science of Hitomi, which will be ultimately expanded with Athena
- Sensitive Hard X-ray mission will also be desirable to provide another view of the dynamically evolving universe

Hitomi collaboration

Professor Yasuo Tanaka 1931 - 2018

END

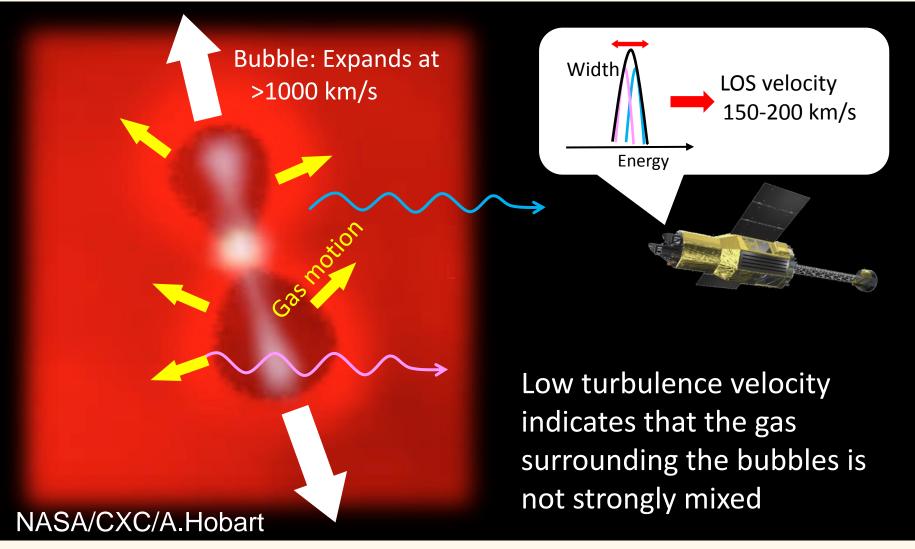
The Hitomi mission


- Study of dynamical evolution of the universe
 - With high resolution spectroscopy (microcalorimeters)
 - and with wide-band spectral coverage (multilayer supermirror with hard X-ray imager and Compton camera)
- Direct measurement of gas velocity
- Sensitive probing of non-thermal processes
- Complementary to high-resolution images (with Chandra and XMM-Newton)
- Establish key technologies for future missions

Length: about 14 m in orbit

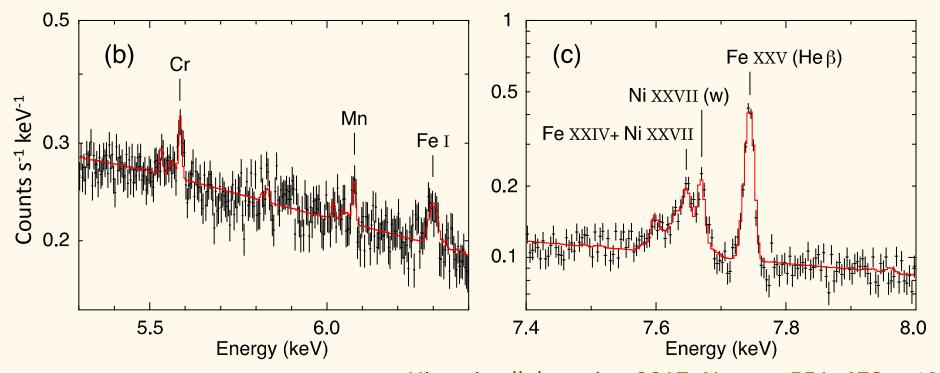
Weight: about 2700 kg

Width of He-like Fe K lines



Velocity structure

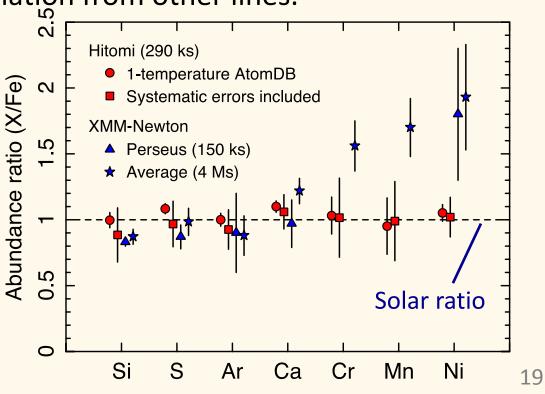
- Velocity shear exists in the central 100 kpc region of the cluster
- Velocity dispersion (100 200 km/s in LoS) is much smaller than the sound velocity ($\sim 1000 \text{ km/s}$).


Turbulence seems weak in the center

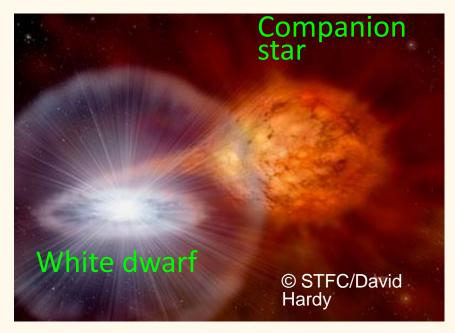
- Turbulent pressure is about 4% of the thermal gas pressure
- It is not clear how the cluster gas is heated and maintained for a long time

Measuring low abundance elements

- Ni and Mn abundances have key information to tell how type la supenova explosions, involving white dwarfs, occur.
- Cr, Mn, and Ni lines were very difficult to measure, due to low intensity and contamination with Fe lines.
- Hitomi SXS enables clear measurement of these lines.

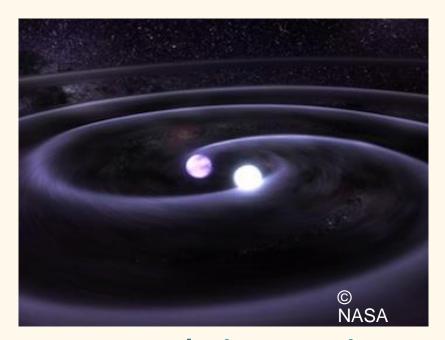


Metal abundances


- Uncertainty in modeling (two temperatures, e.g.) gives abundance difference of < 20% for Si and S, and < 5% for other elements.
- All the elements show relative ratios <u>close to the solar</u> <u>abundance</u>, including Cr, Mn and Ni.
- XMM-Newton reported higher abundances for Cr, Mn and Ni: due to possible contamination from other lines.

Cluster (mainly elliptical galaxies) and the Milky Way (spiral) indicate very similar metal composition:
Supernova process is not sensitive to galaxy types.

Relative abundance for 1temperature plasma. Errors are 1 σ statistical.



Origin of Type Ia supernova

Explosion at Chandrasekhar mass

→ Super-solar metallicity

Merger: explosion mass is less than the limit

→ Lower metallicity

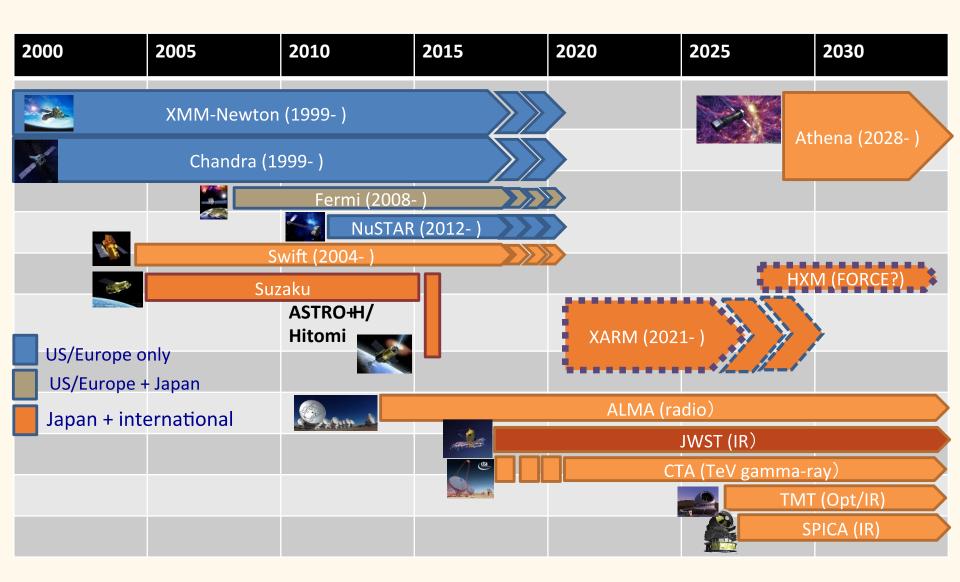
Both scenarios need to work to explain the observed solar abundance of elements.

Hitomi Collaboration

- > 200 members, not including students, from > 70 institutes.
- Collaboration meeting was held twice every year.
- Science activities were carried out to prepare for the mission:
 PV target selection and target team formation, white papers for 16 subjects, summer schools for young members etc.

Cambridge, UK, 2012 (8th)

Tokyo Metropolitan U, 2015 (14th)


Recovery of the Hitomi science

X-ray Astronomy Recovery Mission (XARM)

- We aim the launch of XARM to be around 2021.
- The mission will carry microcalorimeters and CCD instrument.
- The mission will be carried out by JAXA and NASA, with contribution from ESA
- After the delay of ~ 5 years, we expect a substantial advance in the spectroscopy of cosmic plasmas by measuring all categories

of X-ray objects.

Time Frame of XARM

Anomalous event of Hitomi

The Hitomi spacecraft lost its ground contact on March 26, 2016, and later the recovery operation by JAXA was discontinued.

The following page gives more information: ☐ http://global.jaxa.jp/projects/sat/astro_h/topics.html ☐

Targets in the start-up phase

Perseus cluster
N132D (SNR)
IGR J 16318-4848 (Obscured HMXB)
G21.5-0.9 (SNR)
RXJ 1856.5-3754 (Isolated NS)
Crab Nebula

All detectors are confirmed to function properly

- All sources were observed for 2-4 days, but some sources had short exposures (due to attitude parameter tuning).
- N132D and IGR J 16318 have very limited SXS data, and RXJ1856 was absorbed by SXS gate valve.

Hot gas heating by SMBH

- The mechanical pressure of "bubbles" exceeds the thermal gas pressure.
- However, observed weak turbulence (4% of thermal pressure) can heat only very close region from the bubble.
- The turbulence energy will be exhausted in 10⁸ years
- Continuous generation of turbulence is needed or heating occurs without involving the turbulence.
- Cluster mass estimated from the hydrostatic equilibrium does not need significant revision.

Shock fronts in clusters

- Temperature jumps are confirmed in the radio relic regions
 - Clear evidence of shock fronts
 - Only Suzaku could measure pre-shock temperature, because of the low background (better than Chandra and XMM-Newton)
- Temperature jump \rightarrow Rankine-Hugoniot relation \rightarrow Mach number $M_{\rm x}$ to be about 3

$$\frac{T_2}{T_1} = \frac{5M^4 + 14M^2 - 3}{16M^2}$$

- Radio data also give Mach numbers from spectral indices (M_R)
- $M_X \approx M_R$ is confirmed for about 5 clusters