JAXA & Athena -- Japan's contributions and Future plan --

Hiro Matsumoto

Osaka U.

Chair of Athena WG, ISAS Athena Science Study Team

Structure in Japan

ESA

HEAPA

High-Energy Astrophysics Association in Japan

Researcher's community

2018/10/15

JAXA

Japan Aerospace Exploration Agency

ISAS

Institute of Space and Astronautical Science

At the last Athena conference in 2015

- ASTRO-H (Hitomi) will be launched in 2016.
- Athena is the first priority of HEAPA after AH.
- Athena will be an "S-class" project of ISAS/JAXA.
 - -Budget for S-project: 10 MEuro/year including ALL S-class projects.

But···

Spinning fast

Loss of AH changed the situation.

ASTRO-H-XRISM

ASTRO-H (Hitomi)

Calorimeter, CCDs, Hard X, Gamma

X-Ray Imaging Spectroscopy Mission (XRISM)

Concentrate on calorimeter and CCDs

2018/10/15

5

XRISM

- Formerly known as "XARM"
- PI: M. Tashiro (Saitama U/JAXA)
- 1AXA project started in July

H. Yamaguchi's talk on Tuesday

Calolimeter "Resolve"	2.9'	6 × 6	7 eV (goal < 5 eV)	
CCD "Xtend"	28'	1280×1280	<250 eV (EOL)	6

Athena in ISAS/JAXA in 2015

- Athena WG applied for the S-class project of ISAS in 2015
 - Space Science Committee's evaluation in 2015
 - Athena science is very important.
 - But the scale is **too large as an S-project**. The strategy of ISAS for Athena should be revised.
 - After the revision, Athena shall be reevaluated.
 - Development of the Athena X-IFU cooling chain should be proceeded independently.
 - That can be a key technology of ISAS/JAXA, which can be applied to SPICA, or LiteBIRD.

Athena in ISAS/JAXA in 2018

- Athena was moved from the S-class project, and is now a candidate for "a strategic joint project with foreign agencies."
 - ISAS is almost ready to write the letter of commitment to the activities until the adoption of Athena
 - ISAS would like to finalize the scope of JAXA's contribution before writing the letter.
- Development of the cooling chain of X-IFU is being led by the Cooling Chain-Core Technology Program team of ISAS/JAXA.

2018/10/15

Project Planning of ISAS/JAXA

Pre-Phase A1	Pre-Phase A2	Phase A1	Phase A2	Phase B	Phase C	Phase D	Phase E
Mission Exploratio n Phase	Mission Definition Phase	Design Concept	Project Definition	Basic Design	Detailed Design	Production, test	Operation
ISAS WG	ISAS Pre- project candidate	JAXA Pre	e-Project	JAXA Project			

Pre-project MDR cardidate selection review

We^lare here.

Just before becoming an ISAS pre-project candidate

2018/10/15

Japan's Contributions to Athena

- Science with AH & **XRISM**
 - -Let's open a new field of "precise X-ray spectroscopy"
 - -Discover new science

Bases of Athena science

XRISM->Athena

feedback

 $z \sim 0$ quiet AGN

6 seed BH

Japan's Hardware contributions

- Main: X-IFU cooling chain
 - Joule-Thomson coolers, drivers, contributions to design and test
- Options
 - –X-IFU readout system (SQUID)
 - -SPO, WFI
 - -Calibrations, operations etc.

X-IFU cooling chain

300K
100K
30K
15K
4K
2K
Cooler

Cold down bootles line

Thermal link

Outer Cryo Shield
Outer Cryo Shield
Outer Vessel

13

The X-IFU De	ewar assembly	v — Subi	ect to o	ptimization
--------------	---------------	----------	----------	-------------

	15K pulse tube	5	ESA from ALAT
	4K Joule-Thomson	2	JAXA
	2K Joule-Thomson	2	Originally ESA from RAL But JAXA may provide.
2018/10	50mK sorption ADR	1	CEA-SBT

Test in 2017

Cooling test > 160 days @ France

No refrigerant

4KJT+2KJT+50mK cooler

Japan

Good results

CEA

France-Japan collaboration team + X-IFU PI & PM

cooler

Athena in HEAPA

- Athena is still the very important project after XRISM.
- Japan would like to realize a mission after mid-2020 that is complementary to Athena

2018/10/15

PI. K. Mori (Miyazaki U.)

Focusing on Relativistic universe and Cosmic Evolution

Wide energy range (1-80 keV) with 15"

Key Science

Find "Missing" BHs in various mass ranges.

2018/10/15

2018/10/15

DIOS-Super DIOS

Super DIOS performance					
Weight	2000-3000 kg				
Rocket	H2-H3				
Area at 0.6 keV	> 1000 cm ²				
Focal length	about 3-4 m				
Angular resolution	10 arcsecond				
Energy resolution	< 2 eV @ 1 keV				
TES pixels	~30000				
FOV	30 arcmin				

- Formerly "DIOS"
 - DIOS WG was dissolved to concentrate on XRISM.
 - Instruments and concept of DIOS are being revisited.
- Clarify the physical status of WHIM by survey observations with TES calorimeter.
- Aiming at launch in early 2030s

HiZ-GUNDAM

Key Science

Probe hi-z universe using GRBs

Find X-ray counterparts of Gravitational wave objects

HiZ-GUNDAM

X-ray: Lobster Eye+ CMOS

Items	Parameters		
Energy band (keV)	0.4-4 keV		
Telescope type:	Lobster Eye Optics		
Optics aperture	240 x 320 mm ²		
Number of Unit	6		
Field of View	~ 1.2 str (6 units)		
Focal length	300 mm		
Focal plane detectors	CMOS array		
Number of CMOS	24 (4 CMOS x 6 units)		
Sensitivity	1e-10 (erg/cm2/s)		
	For 100 sec		
Point Spread Function	3 arcmin		
Angular accuracy	~ 60 arcsec		

Opt/NIR: 4 band

Items	Parameters				
Telescope type	Offset Gregorian				
Aperture size	30 cm				
Focal length	183.5 cm				
F number		F6	5.1		
Field of view	34 arcmin ×34 arcmin				
FoV per pixel	2 acsec × 2 arcsec				
Image size	3 pixel × 3 pixel				
Integration time	10 minutes (2 minutes x 5 frames)				
Observation Band (µm)	0.5-0.9 0.9-1.5 1.5-2.0 2.0-2.5				
Band width	0.4 μm	0.6 μm	0.5 μm	0.5 μm	
Limiting Magnitude mag (AB)	21.4	21.3	20.9	20.7	
Focal detector	HyViSi HgCdTe HgCdTe HgCdTe				

PhoENiX

Physics of Energetic and Non-thermal Plasmas in the X-region

X- and gammaray obs. of solar flares

> PI. N. Narukage (NAOJ) 23

Key Science

Particle acceleration by magnetic reconnection

Solar Flare

2018/10/15

Soft X (0.5—10keV)

Image, Spectrum
 Hard X (5—30keV)

- Image, Spectrum Soft γ (20—600 keV)
 - Spectrum, Polarization

PhoENiX

Soft X-ray imaging-spectrometer

Hard X-ray imaging-spectrometer

Precision X-ray grazing mirror Spatial resolution: 1 arcsec Low scattering: 10⁴ @ 20 arcsec

Soft X-ray high speed camera Back illuminated CMOS

Hard X-ray camera
CdTe detector (same as FOXSI-3)

Soft y-ray detector ASTRO-H SGD: Si/CdTe Compton camera Energy range: ~ 600 keV polarization measurement (> 60 keV)

Summary

- Athena is an important project after XRISM for ISAS/JAXA and HEAPA.
- Main contributions are science and X-IFU cooling chain.
- There are several mission candidates after mid-2020s