

SN Ia: A violent and luminous explosion of a CO white dwarf (WD)

Nucleosynthesis:

Main contributors to the iron-group elements

Standard(-isable) candles:

A probe of the accelerating universe

Double-Degenerate (DD)

Violent merger

(Dynamically-driven) double-detonation DD (D⁶)

Single-Degenerate (SD)

Accretion from a companion

⇒ Accretor scenario Near-M_{Ch}WD Both channels can reproduce observed SN Ia properties (light curves, spectra). Other signatures are needed to identify the dominant progenitor channel:

- Search for surviving companion.
- WD binaries population.
- Ionising radiation of accreting WDs.
- Properties of host galaxies / local stellar populations.
- Nucleosynthesis yields

Both channels can reproduce observed SN Ia properties (light curves, spectra). Other signatures are needed to identify the dominant progenitor channel:

- Search for surviving companion.
- WD binaries population.
- Ionising radiation of accreting WDs.
- Properties of host galaxies / local stellar populations.
- Nucleosynthesis yields \Rightarrow focus on the "Iron-peak elements" (Cr, Mn, Ni).

More massive WDs have denser cores. If at the onset of the explosion $\rho_c \gtrsim 10^8 \ {\rm g \ cm^{-3}}$), electron capture reactions $(p+e^- \to n+\nu_e)$ can occur, enhancing the yield of neutron-rich species.

Near- M_{Ch} WDs ("accretor") \rightarrow higher Cr, Mn, Ni to Fe. Sub- M_{Ch} WDs ("merger") \rightarrow lower Cr, Mn, Ni to Fe.

4/13

Cr- and Mn-to-Fe ratio for type Ia SN models

Nickel	mass as another
d	iscriminant:

Sub- $M_{\rm Ch}$ WD: $M_{\rm Ni} = 0.008 - 0.04 \ M_{\odot}$

Near- $M_{\rm Ch}$ WD: $M_{\rm Ni} = 0.06 - 0.12 \ M_{\odot}$

lon	Energy (keV)			
Cr xxIII (He-like)	5.62-5.69			
Cr xxıv (H-like)	5.92; 5.93			
Mn xxIII	5.96-6.03			
Mn xxıv (He-like)	6.13-6.18			

Stellar abundances

Comparing chemical evolution models to observed [Mn/Fe] [Seitenzahl+13]

Intra-cluster medium

Abundance of neutron-rich species in hot (X-ray) ICM [Hitomi+17]

Supernova remnants

n-rich species in young SNRs: Tycho, Kepler, 3C397 [Badenes+08, Park+13, Yamaguchi+15]

⇒ Mixture of near-M_{Ch} and sub-M_{Ch} WDs similar contributions from DD and SD channels

⇒ Only massive WDs only SD progenitors so far

Can we increase the sample of type Ia SNRs in which to measure neutron-rich species abundance?

6 / 13

X-ray images of 3C397, SNR 0509-675, and N103B.

SNR	Distance (kpc)	Age (yr)	F_X [5 – 8 keV]	$M_{\rm Cr}/M_{\rm Fe}$	$M_{\rm Mn}/M_{\rm Fe}$	kT (keV)	t _{exp} (ks)
3C397	8–9	1500-5000	3.5×10^{-12}	0.027	0.025	2.2–5	25/80/150
N103B	50 (LMC)	860	3.6×10^{-14}	?	?	1.5–4	50/100/150
0509-675	50 (LMC)	400	1.2×10^{-14}	?	?	2–10	50/100/150

- X-IFU response : Baseline-config, 2018 August, THIN filter
- WFI response: 2017 August, 15 rows, with filter, 5 arcmin average
- Simulated $M_{\rm Cr}/M_{\rm Fe}$: 0.009 to 0.030, and $M_{\rm Mn}/M_{\rm Fe}$: 0.006 to 0.024

Forward spectral analysis of simulated spectra : \mapsto How well do we recover the input mass-ratios ?

X-IFU and WFI spectra (black) of N103B compared to Suzaku/XIS (red).

- X-IFU response: Baseline-config, 2018 August, THIN filter
- WFI response: 2017 August, 15 rows, with filter, 5 arcmin average
- Simulated $M_{\rm Cr}/M_{\rm Fe}$: 0.009 to 0.030, and $M_{\rm Mn}/M_{\rm Fe}$: 0.006 to 0.024

Forward spectral analysis of simulated spectra:

→ How well do we recover the input mass-ratios?

Close-ups on Cr XXIII, Mn XXIV, and Fe line regions (X-IFU).

(All error bars at 3σ .)

- \mapsto Much improved measurement for Cr and Mn with even short X-IFU exposures.
- → High-resolution becomes needed for Mn.

(All error bars at 3σ .)

- → Meaningful measurements only with high-resolution.
- → Reasonably short X-IFU exposures to study extragalactic type Ia SNRs.

(All error bars at 3σ .)

- → Meaningful measurements only with high-resolution.
- → Reasonably short X-IFU exposures to study extragalactic type Ia SNRs.

Systematics-dominated

- 1 Temperature and non-equilibrium ionisation uncertainties
- Atomic physics uncertainties
- Expansion : Ejecta launched at $> 1000 \text{ km s}^{-1}$
- Iron-group elements co-spatial?
- 2 Path cleared by XRISM?
- 3 Spatially-resolved spectroscopy

Mn/Fe measurement vs. expansion FWHM velocity (3C397).

⇒ Full spectro-spatial simulations (SIXTE) as next step.

Novel analysis methods to spectro-imaging instruments: See F. Acero's poster.

