Formation and growth of the earliest SMBH and the Athena-WFI Survey

G. Lanzuisi, A. Comastri, J. Aird,

M. Brusa, N. Cappelluti, R. Gilli, F. Vito, I. Matute...

How the z>6 SMBH got their mass?

z>6-7 QSOs with $M_{\rm BH}$ >10 8 M_{\odot}

Continuos Edd-limited accretion needed for ~1Gyr?

Heavy vs. light seeds?

BH seeds models

- (episodic) Super-Eddington accretion needed?
- Different seeds work for 10⁶ wrt. 10¹⁰ M_{BH} at z~6?

Abel+02, Broom&Loeb03, Volonteri&Rees05, Lodato&Natarajan06, Tanaka&Haiman09, Madau+14, Pezzulli+16

State of the art: observations...

7Ms CDFS + 2Ms CDFN + staking of undetected...

State of the art: observations... and models

7Ms CDFS + 2Ms CDFN + staking of undetected...

Not able to constrain seed models

Need to go z>6!

Athena-WFI survey capabilities

Large field-of-view (40' x 40')
+
Large collecting area (1.4m²@1kev)
+
Good quality (~5") PSF over

large fraction of FOV

Powerfull survey machine! 100 times Chandra/XMM

SciObj-211: Detect at least

Aim1: 10 AGN z=6-7 @ L_x =43-43.5 erg/s \rightarrow Flim 2.4×10⁻¹⁷ over 2.4 deg²

Aim1b: 10 AGN z=7-8 @L_x=43.5-44 erg/s \rightarrow Flim 1.3×10⁻¹⁶ over 27.4 deg²

SciObj-211: Detect at least

Aim1: 10 AGN z=6-7 @ L_x =43-43.5 erg/s \rightarrow Flim 2.4×10⁻¹⁷ over 2.4 deg²

Aim1b: 10 AGN z=7-8 @ L_x =43.5-44 erg/s \rightarrow Flim 1.3×10⁻¹⁶ over 27.4 deg²

Plus SciObj-111 First Groups and SciObj-221 CT AGN

→ Consolidated survey strategy:

Deep 12x1-1.5<u>Ms</u>

Shallow 108x90ks

Tot=23.62 Ms

Known z>6 AGN are extremely luminous/rare QSOs from Opt/IR surveys

Known z>6 AGN are extremely luminous/rare QSOs from Opt/IR surveys

Goal: populate the z>6 Lum-z plane with hundreds of moderate luminosity AGN (L_x =43-45)

Full SIXTE simulation of a deep field

Input: Mock catalogs from Gilli+07

~10⁵ AGN in 10 deg², up to z=8, and with $F_{0.5-2}$ down to -18.5 Each with N_H , z, L_X

- ~2x10⁵ Galaxies at faint fluxes
- + Extended emission from CDFS (Finoguenov+15)

Full SIXTE simulation of a deep field

Result for 1Ms exposure (red 0.5-2, green 2-4.5 blue 4.5-10 keV)

Full SIXTE simulation of a deep field

Result for 1Ms exposure (red 0.5-2, green 2-4.5 blue 4.5-10 keV)

Source Detection

Run wavdetect on the 0.7-2 keV image

Source Detection

Run wavdetect on the 0.7-2 keV image \rightarrow ~4300 sources detected

Source Detection

Run wavdetect on the 0.7-2 keV image → ~4300 sources detected ~3000 AGN + 1300 Galaxies

High z AGN

Over 10 deep fields \rightarrow ~10 AGN in the z=6-7 and L $_{\rm x}$ 43-43.5 box

High z AGN

Over 10 deep fields \rightarrow ~10 AGN in the z=6-7 and L_x 43-43.5 box

High z AGN

Over 10 deep fields \rightarrow ~10 AGN in the z=6-7 and L $_{\rm x}$ 43-43.5 box

TBD: test Aim1b over ~100 shallow fields...

Expected high-z LF

Good constraints on z=6-7 LF, loose on z>7 (wide survey reduced in CORE ex.)

Expected high-z LF

Good constraints on z=6-7 LF, loose on z>7 (wide survey reduced in CORE ex.)

Still huge impact on seed models! Unexplored L_x-z range

Expected high-z LF

Good constraints on z=6-7 LF, loose on z>7 (wide survey reduced in CORE ex.)

Still huge impact on seed models! Unexplored L_x-z range

Conclusions

Only a minority of the z > 6 QSOs were uncovered even at high masses/luminosities and none of them with X-rays

Several hundreds of moderate luminosity AGN at $z\sim 6-7$ and Luminous quasars at $z\sim 8-9$ will be detected by multi-layered Athena Surveys

Athena will open up the parameter space to a level where the key Issues concerning the formation and early evolution of the frst SMBH can be addressed

While waiting for the new missions we should aim to increase — by an order of mag — the area surveyed in the X-rays at relatively faint fuxes exploiting the survey capabilities of Chandra and XMM

Multiwavelength searches (e.g. JWST-ALMA-MUSE)

7 arcsec HEW

TBD: add stray-light impact

Straylight implementation into SIXTE is progressing. Setup for CXB test simulation (Jörn Wilms):

simulations performed without WFI gaps and dithering and 5" pixel size (to be applicable also to X-IFU)

0.5-2keV flux ~0.3cps averaged over FoV (~1x10-3 cnt s-1 cm-2 keV)

BKG counts maps

- Diffuse galactic foreground
- CXB (80% resolved)

Vignetted

- particle background

0.7-2 keV optimized to reduce bkg contribution

