

Athena WFI capabilities 40' x 40' FOV, 5" PSF, 1.4 m² eff. area, 5 ms timing

Important things we can learn from BH and NS populations

How supernovae work.

Early heating of the primordial IGM

Ann Hornschemeier Athena Science Conference

Key science questions, Athena WFI observations of nearby galaxies

- What is the prevalence of super-Eddington accreting pulsars and how does this fit into compact object evolution scenarios?
- What are the progenitor paths for the massive compact objects being found by e.g., LIGO/Virgo?
- What is the role of SN kicks in dynamical evolution of NS and BH populations?

SUPER-EDDINGTON ACCRETION ONTO PULSARS:

How prevalent is this? How does this fit with the rest of the pulsar population?

ULX pulsars, a major challenge to our understanding of accretion

ULX PULSARS

(Bachetti et al. 2014, Feurst et al. 2016, Israel et al. 2017, Kosec et al. 2018, Brightman et al. 2018; Carpano et al. 2018, Wilson-Hodge et al. 2018)

- Up to 500 times Eddington limit for a 1.4 M_☉ NS
- Athena WFI time-resolved spectroscopy: separate the (pulsed) accretion column from the (non-pulsed) accretion flow beyond the magnetosophere

Enabled by time resolution (e.g., NuSTAR & XMM) and searches in time domain (EXTraS)

Could all ULX sources contain pulsars? Perhaps. (Walton et al. 2018)

Pulsed spectrum from accretion column can explain hard excess in all the ULX systems

Broadening the sample with Athena WFI

5 confirmed, 1 candidate (M51)

Ann Hornschemeier Athena Science Conference Palermo, Italy

Peak L_X, 10⁴¹ erg/s

- Properties:
 - Pulse periods ~1-30 sec
 - $L_x > 10^{39} \text{ erg s}^{-1}$
- How far can we go?
 - ATHENA: > 100X the volume for reaching 10³⁹ erg/s (25 Mpc)
 - Brighter systems to much larger distances (>250 Mpc)

27 September 2018

UNDERSTANDING THE FORMATION OF MASSIVE STELLAR BHS:

The example of Wolf Rayet X-ray Binaries (a rare, but important, population)

Wolf Rayet X-ray Binaries: The biggest, baddest accreting stellar-origin BHs? • Wolf Rayet stars are

Wolf Rayet stars are luminous, massive stars with strong stellar winds

- The orbital periods are short (most are less than a day)
- Likely only contain BH (not NS): van den Heuvel (2017)

Artist's rendition of the WR XRB NGC 300 X-1

Why might you care about a BH in a relatively tight orbit with a very massive star?

Masses in the Stellar Graveyard in Solar Masses

Time domain discovery space: massive objects in tight orbits

ENABLED by combination of light collecting power (effective area) and PSF

Using archival Chandra data From observation 9 years prior: Periodicity of ~14-15 hours (Maccarone et al. 2014)

Palermo, Italy

WR XRBs are rare!

Only six examples known!

(but important)

- Few HMXBs survive to the WR XRB phase: unstable mass transfer in the Common Envelope phase? (e.g., Munoz et al. 2015, van den Huevel et al. 2017)
- This single source (the NGC 253 WR XRB) implies Advanced LIGO detection rates up to ~10 per year (Maccarone et al. 2014)

Athena WFI: Time domain studies of XRBs in local galaxies

NGC 6946 (d = 6.7 Mpc SFR = $3.2 M_{\odot} \text{ yr}^{-1}$ SN rate: 0.1 yr⁻¹) **D25**

"Fireworks Galaxy" 50 ks Simulation; SIXTE, N. Vulic/

TIMING CAPABILITY:

(~5 ms timing resolution)

→ young, ULX pulsars (0.4-30 s pulse periods) easily found and/or verified

SURVEY POWER

(collecting area w/ good PSF × solid angle)

> search for short orbital period (hours) variability, e.g., WR **XRBs**

→ combine w/ground-based facilities: compact object masses

M33: Young compact objects

M33 (d=875 kpc, SFR=0.3 M_☉/yr) ATHENA WFI 25 ks x 4 pointings

- In 100 ks, L_{XP}~10³⁴ erg/s: ~109 HMXBs with L_X>10³⁵ erg/s and >100 SNRs
- XMM-Newton 900 ks total, ~100 ks depth (Williams et al. 2015): 55 HMXB candidates.
- Lack of short-period (1– 10s of sec) pulsars?
- Obscured HMXBs: 4-12 keV band with deeper exposures (>75 ks)

SUPERNOVA KICKS:

The dynamical evolution of LMXB systems

Supernova Kicks inferred from LMXB distribution

- Asymmetry in mass ejection and/or neutrino emission can lead to SN kicks
- Suggestive evidence, centered on NS:
 - ◆ Excess LMXBs in ellipticals found with Chandra at L_X < 10³⁸ erg/s (Zhang, Gilfanov & Bogdan 2013)
 - Intracluster LMXBs found in Virgo (3.5σ result, Hou et al. 2017)
- Stellar mass BH SN kicks?
 - Large natal kicks for BHs possible (Repetto et al., 2012; Repetto & Nelemans, 2015)
 - ◆ BH-LMXBs, as transients, less luminous on average (e.g. Wiktorowicz et al. 2014; Corral-Santana et al. 2016; Belloni & Motta, 2016).

Dynamical Evolution of LMXBs: Supernova Kicks?

Example: M84 and M86 in Virgo: can reach $L_X = 1 \times 10^{37}$ erg/s for both galaxies in 10 ks

WFI FOV permits efficient/sensitive measurement of LMXBs in galaxy outskirts to required low-L_x~10³⁷ erg s⁻¹

WFI t_{exp} =10 ks

ALSO: search for Ultraluminous X-ray bursts (WD-IMBH; e.g., Jonker et al. 2013; Irwin et al. 2016, Shen et al. 2018; arXiv:1809.09359)

How well have we studied XRB populations in the local Universe?

Overall we probe galaxies in the upper end of the "outbursting" binary range

THANK YOU

Ann.Hornschemeier@nasa.gov xraydeep.org

NASA Postdoctoral Program deadline Nov 1st:

https://npp.usra.edu/opportunities/details/?ro=18198 High Energy Galaxy Surveys

Research group at NASA GSFC: Neutron stars, black holes, hot gas and galaxy evolution xraydeep.org

Neven Vulic

Santana de Silva

Antara Basu-Zych

THANK YOU

Ann.Hornschemeier@nasa.gov xraydeep.org

NASA Postdoctoral Program deadline Nov 1st:

https://npp.usra.edu/opportunities/details/?ro=18198 High Energy Galaxy Surveys

BACK UP

Pulsar populations: looking beyond the Milky Way and Magellanic Clouds

HMXB Pulsars: Magellanic Cloud analogs at lower- L_X P_{spin} ~few-1000 s P_{orb} ~10's-100's days

In 100 ks in M31, will detect new pulsar systems very easily.

(Haberl & Sturm 2016)

Point source discovery speed (Wik et al. 2018)

FOM(E) =
$$\int_{\text{FOV}} (S/N)d(\text{FOV})$$

$$\propto \int_{0}^{\theta_{\text{max}}} (S/N)\theta \frac{\theta}{R(\theta, E)} d\theta$$

$$0.3 \qquad 1 \qquad 3 \qquad 10$$
Energy (keV)

$$ext{FOM}(E) = \int_0^{ heta_{ ext{max}}} rac{A(heta, E)}{R(heta, E) \sqrt{B_{ ext{Gal}}(E)A(heta, E) + B_{ ext{Det}}(E)f^2}} heta d heta$$

Important things we can learn from BH and NS populations

How supernovae work.

Early heating of the primordial IGM

X-rays from star formation affect high-z 21 cm measurements (Pacucci et al. 2014)

Slices of the 21cm brightness temperature map taken at the X-ray heating peak at large scales:

More uniform brightness temperature map, due to longer distance traveled by more energetic photons

What is the impact of X-ray binaries on the early heating of the IGM?

Two areas of impact for Athena WFI:

- Measurement of galaxy X-ray SEDs of large, volume-limited samples of galaxies in local Universe (key: 0.2-1.0 keV performance!)
- Deep studies of distant (0.1 < z < 4) galaxies in Athena WFI surveys</p>

The X-ray output of binaries exceeds that of AGN at z>6

