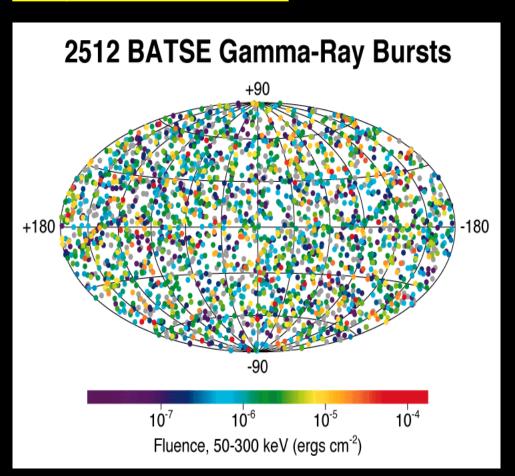
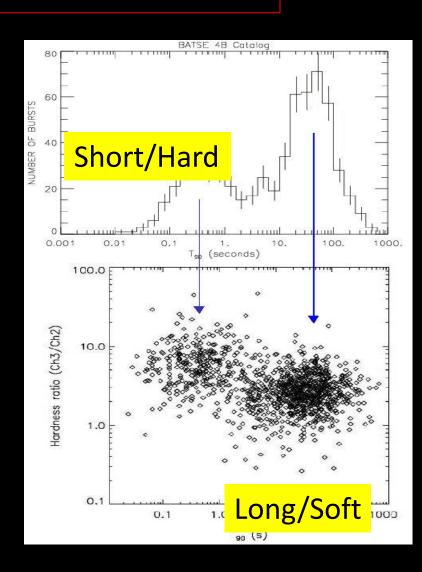
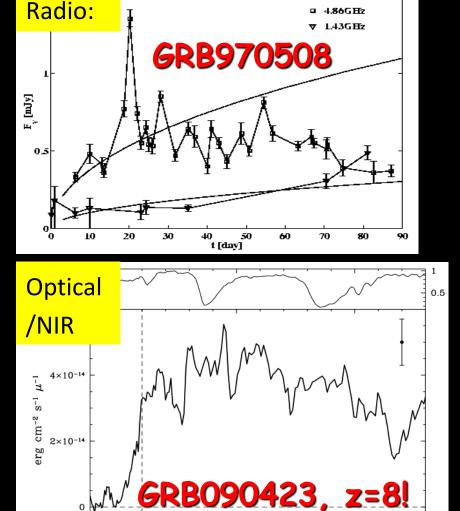

Dissecting the close environment of gamma-ray bursts: overview and new perspectives in the Athena era

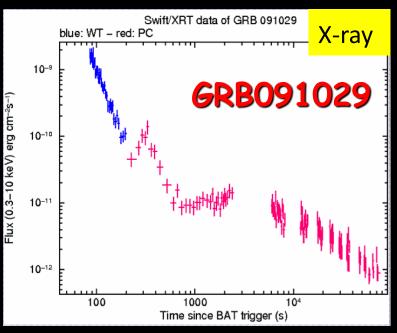
V. D'Elia

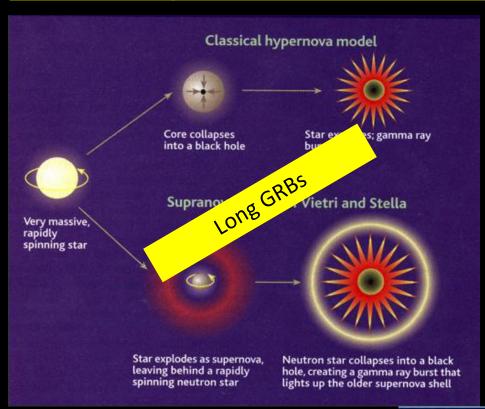
ASI Space Data Centre
INAF Astronomical Observatory of Rome


OUTLINE


- GRBs: a brief overview
- GRB Absorption Spectroscopy
- GRB spectral features in high resolution
- Distance diagnostics with excited levels
- New perspectives in the Athena era


GRBs are seconds to minutes lasting flashes of gamma rays


They are distributed:


The gamma (prompt) radiation is followed by emission in all bands (afterglow)

The GRB optical/NIR follow-up allowed us to determine the GRB cosmological nature. GRBs are the most distant, powerful and violent phenomena of the Universe

GRBs are thought to be associated with a newly born, stellar mass black hole

Two channels of BH production:

"Fast channel":
 Hypernova/collapsar model
 Collapse of a star with several tens of solar masses

2) "Slow channel":BH-NS (NS-NS) merging2 SN explosions and angular momentum loss through GWs

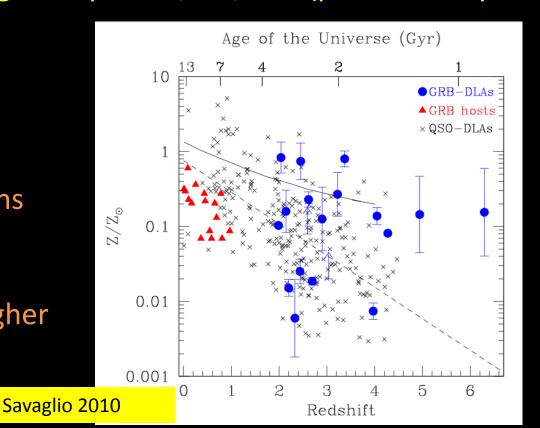
GRB Absorption spectroscopy

Suitable to:

- Find redshifts, compute energetics, and build the GRB luminosity function
- Estimate the metal content in high redshift galaxies
- Characterize the circumburst environment
- Explore the interaction between the GRB and the surrounding medium
- Study the intervening absorbers along GRB sightlines

GRB Absorption spectroscopy

In the past, metal enrichment in galaxies at high z has been studied using:

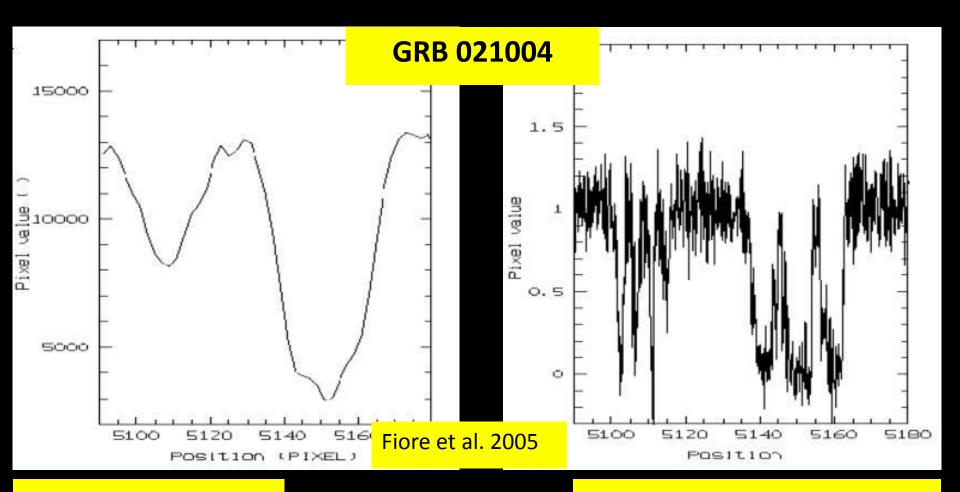

Lyman Break Galaxies (not representative of the Galaxy population)

Galaxies along the line of sight of quasars, i.e., DLA (preferentially

probe galaxy outskirts)

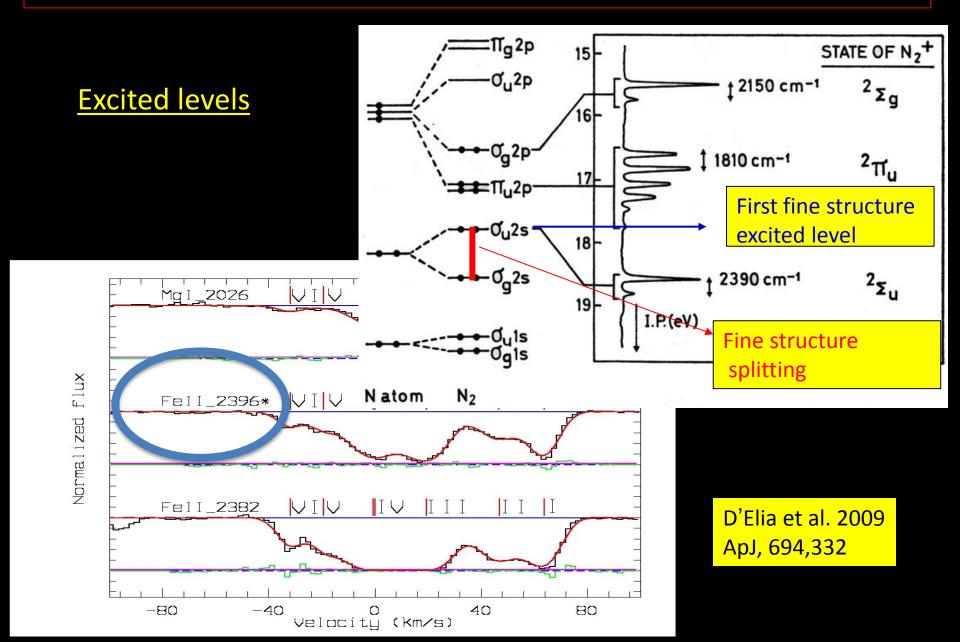
Advantages in using GRBs:

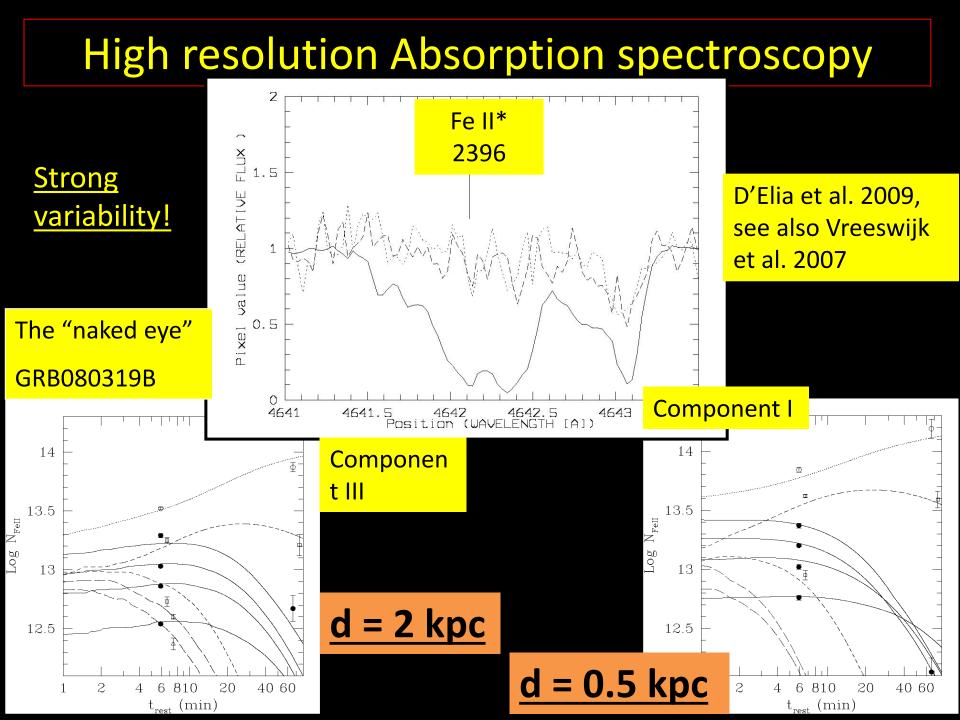
- Probing central galaxy regions
- No luminosity bias
- ISM can be studied up to higher redshift than DLA systems.


Advantages of hi-res spectroscopy:

- Is necessary to disentangle the ISM from the absorption coming from the GRB surroundings.
- Separates the GRB surrounding medium in components, allowing a more accurate study of the composition, density, kinematics and physics of the absorbing gas.
- Is our only tool to fully explore the wealth of information carried by the lines absorbed by the excited (in particular fine structure) levels.

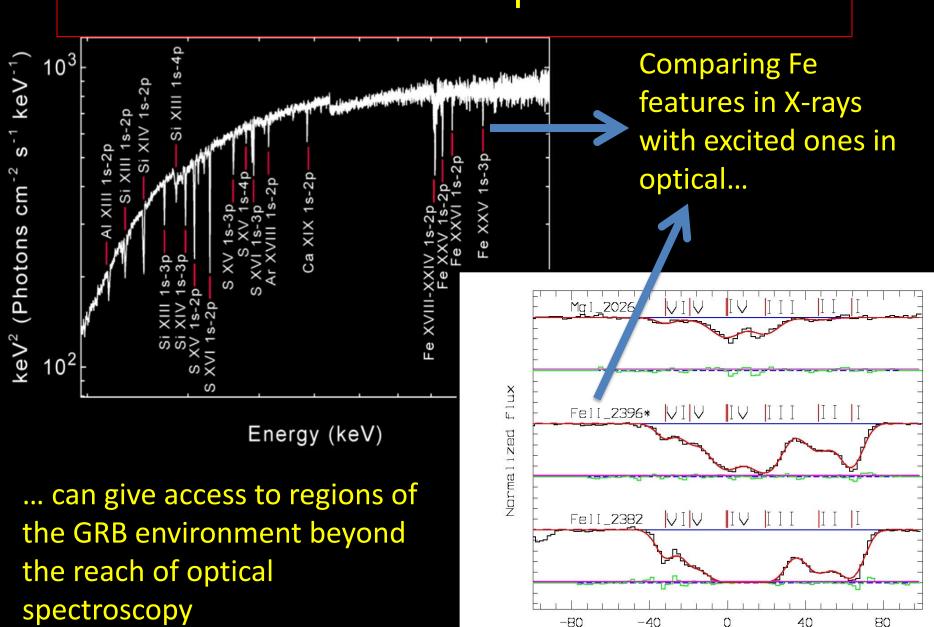
Disadvantages


- Suitable for high luminous afterglows only
- A fast reaction to the trigger is needed (Swift + RRM)


Advantages of hi-res spectroscopy:

FORS, R=1000

UVES, R=40000


Burst	#	$\Delta t_{\rm obs}$	instrument	ion levels/lines	z_h	$\log N_{ m HI}$	d/pc	/pc	ref.
020813	2	~ 16h	KECK/LRIS VLT/UVES	Feπ ⁶ D _{7/2} λ2396	1.25	-	50 – 100		1
050730	2	~ 1h	VLT/UVES	Fen ${}^{6}D_{7/2}$, ${}^{6}D_{5/2}$, ${}^{6}D_{3/2}$, ${}^{6}D_{1/2}$ ${}^{4}F_{9/2}$, ${}^{4}F_{7/2}$, ${}^{4}F_{5/2}$, ${}^{4}F_{3/2}$, ${}^{4}D_{7/2}$, ${}^{4}D_{5/2}$		22.10	124 ± 20	47 ⁺⁶⁸ -54	2, 3, 4
051111	1		KECK/HIRES	Fe II ${}^{6}D_{7/2}, {}^{6}D_{5/2}, {}^{6}D_{3/2}, {}^{6}D_{1/2}$ Si II ${}^{2}P_{3/2}^{\circ}$, 1.55	-	a few times 10 ²		5, 6
060206	2 ^a		WHT/ISIS	Si $\pi^{2}P_{3/2}^{\circ}$, O I $^{3}P_{0}^{\circ}$, $^{3}P_{1}^{\circ}$, C $\pi^{2}P_{3/2}^{\circ}$	4.05	20.85 ± 0 1	~ 10 ³		7, 8
060418	6	5 – 30 min	VLT/UVES	Fe II ${}^{6}D_{7/2}, {}^{6}D_{5/2}, {}^{6}D_{3/2}, {}^{6}D_{1/2}$ ${}^{4}F_{9/2}, {}^{4}D_{7/2},$ Ni II ${}^{4}F_{9/2}$, 1.49	•	480 ± 56		9, 3
080310	2 – 4	10 – 20 min	VLT/UVES	Fem $^{6}D_{7/2}$, $^{6}D_{5/2}$, $^{6}D_{3/2}$, $^{6}D_{1/2}$ $^{4}F_{9/2}$, $^{4}D_{7/2}$, Fem ^{5}D , $^{7}S_{3}$,	, 2.43	18.70 ± 0 1	200 – 400	- 100	10, 11
080319B	3 3	40 – 60 min	VLT/UVES	d > 50 p	oc:		560 – 1700		12, 3
080330	1		VLT/UVES	LARGE			79 ⁺¹¹ ₋₁₄		13, 3
081008	4 ^a	7 – 25 min	VLT/UVES VLT/FORS2	Fen $^6D_{7/2}$, $^6D_{5/2}$, $^6D_{3/2}$, $^4F_{9/2}$, $^4D_{7/2}$, Sin $^2P_{3/2}^\circ$,	1.97	21.11 ± (1(52 ± 6 and 200^{+60}_{-80}		14
090926	4 ^a		VLT/X-shooter	Ni $\Pi^{4}F_{9/2}$ Fe $\Pi^{6}D_{7/2}$, ${}^{4}F_{9/2}$, Si $\Pi^{2}P_{3/2}^{\circ}$, O $\Pi^{3}P_{0}^{\circ}$, ${}^{3}P_{1}^{\circ}$, C $\Pi^{2}P_{3/2}^{\circ}$,	2.11	21.60 ± ()7	$677 \pm 42 \text{ and } 5 \times 10^3$		15, 3
100219A 100901A		1 h - 1 wk	VLT/X-shooter Gemini-N/GMOS	Nim ${}^4F_{9/2}$ Sim ${}^2P^{\circ}_{3/2}$ Fem ${}^6D_{7/2}, {}^6D_{5/2}, {}^6D_{3/2}, {}^6D_{1/2}$	4.67 , 1.41	21.14 ± 0 15	5 300 and 10 ³ a few times 10 ²	- 1000	16 17
oog e	t al.	2013	VLT/X-shooter	$^{4}D_{7/2},$ Ni II $^{4}F_{9/2}$					

Hart

Next steps

- Is there any gas closer to the GRB? Is it highly or fully ionized?
- Answering these questions can give important clues on the GRB progenitors, their emission mechanisms and the way they deposit energy in the surrounding medium
- Optical spectroscopy cannot penetrate further the GRB surroundings
- We need high resolution, high throughput X-ray spectroscopy to address these issues
- Athena X-IFU spectrograph can achieve up to R>2000: an unprecedented combination of <u>collecting area</u>, <u>resolution</u>, and <u>repointing capabilities</u> in X-rays

Next steps

Velocity (km/s)