

Solar system and ATHENA – JUICE synergy

G. Branduardi-Raymont
Mullard Space Science Laboratory
University College London, UK

With many thanks to

W. Dunn, R. Gladstone, R. Elsner, J.-U. Ness, R. Kraft, ...

ATHENA Second Conference Palermo, 24 – 27 Sept. 2018

X-ray sources in the solar system

Jupiter - Chandra and Hubble STIS - 2003

Chandra ACIS reveals different spatial morphology of soft (< 2 keV, ion CX) and hard (> 2 keV, electron bremsstrahlung) X-ray events

→ CX X-ray events map far out from the planet

Simultaneous Hubble STIS images show > 2 keV events coincide with FUV auroral oval and bright features (FUV from excitation of atmospheric H₂ and H by 10 - 100 keV electrons)

→ Same energetic electrons responsible for both, UV and X-rays

Charged particles from Io Plasma Torus or the solar wind (S and C dichotomy)

X-ray emission pulsates, on a variety of timescales (few - 10s of min)

Jupiter's pulsing X-ray Hot Spot

Chandra Jupiter X-rays - December 18, 2000

CXO Auroral Lightcurves 1 June 2016

Left upper: Gladstone et al. (2002)

Left lower and right: Dunn et al. Nature Astro (2017)

What processes lead to X-ray aurorae?

Charged particles need to be accelerated to produce the X-rays

- Downward currents and huge potential drops at the pole [Cravens+ 2003;
 Clark+ 2017; Paranicas+ 2018]
- Pulsed dayside reconnection [Bunce+ 2004]
- Kelvin Helmholtz instabilities and field line resonances [Kimura+ 2016; Dunn+ 2016; 2017]
- Alfven Waves between plasma sheet and poles [Manners+. prep]
- Reconnection in the outer magnetosphere [Guo+ 2018]

Characterisation of in situ particle populations and magnetic field necessary for a comprehensive understanding

Jupiter - Chandra TOO Oct. 2011

Chandra ACIS polar projections in System III:

Red 0.2 - 0.5 keV (C/S)

Blue 0.5 - 0.8 keV (O)

Grey 0.8 – 1.5 keV (solar)

Green > 1.5 keV (bremss.)

Jupiter - Chandra TOO Oct. 2011

Chandra ACIS polar projections in System III:

Red 0.2 - 0.5 keV (C/S)

Blue 0.5 - 0.8 keV (O)

Grey 0.8 - 1.5 keV (solar)

Green > 1.5 keV (bremss.)

Jupiter – Chandra TOO Oct. 2011

Chandra ACIS polar projections in System III:

Red 0.2 - 0.5 keV (C/S)

Blue 0.5 - 0.8 keV (O)

Grey 0.8 – 1.5 keV (solar)

Green > 1.5 keV (bremss.)

Juno UVS at PJ6, May 2017

Juno UVS & JEDI, and Chandra at PJ6, May 2017

Multi-wavelength and in situ observing

Multi-wavelength observations (X-rays, UV, visible, IR, radio) offer clues

In situ measurements of particle populations, magnetic field conditions and accelerations which lead to the X-ray emissions, simultaneous with remote multi-wavelength observing are invaluable to establish the physics underlying the processes

ATHENA in combination with **JUICE** (launch 2022, at Jupiter 2029) would provide a major step up on what Chandra and XMM-Newton can do now in association with Juno

Credit: ESA

Multi-wavelength and in situ observing

Multi-wavelength observations (X-rays, UV, visible, IR, radio) offer clues

In situ measurements of particle populations, magnetic field conditions and accelerations which lead to the X-ray emissions, simultaneous with remote multi-wavelength observing are invaluable to establish the physics underlying the processes

ATHENA in combination with JUICE (launch 2022, at Jupiter 2029) would provide a major step up on what Chandra and XMM-Newton can do now in association with Juno

Credit: ESA

X-rays from the Galilean satellites and the IPT

Io and Europa X-rays (*Chandra* ACIS) from energetic H, O and S ion impacts → fluorescence

Non-thermal electron bremsstr.

+ OVII em. from Io Plasma Torus

Multi-wavelength and in situ observing

JUICE will carry an optical camera, visible-IR (clouds) and UV imaging spectrometer, sub-mm wave instrument, Ganymede laser altimeter, radar (icy moons), magnetometer, particle environment package, radio & plasma wave study, gravity experiments

Ultimately the time has come to have X-ray telescopes on-board planetary missions, such as that considered for Uranus and Neptune, to provide necessary sensitivity and spatial/energy resolution and establish X-rays on a par with other wavebands!

Credit: ESA

