The Energetic Universe

- How do black holes grow and influence the Universe?
 - The history of SMBH growth
 - Obscured AGN census z~1-3
 - AGN winds and outflows z~0-3
 - SMBH growth: accretion vs. mergers
 - BH & SMBH physics
 - Luminous extragalactic transients

The Energetic Universe

- How do black holes grow and influence the Universe?
 - The history of SMBH growth
 - Obscured AGN census z~1-3
 - AGN winds and outflows $z\sim0-3$
 - SMBH growth: accretion vs. mergers
 - BH & SMBH physics
 - Luminous extragalactic transients

N.B: Slide taken from the "Athena Master Short presentation" template available on the Athena website

FEEDING AND FEEDBACK CYCLE

Heating vs. Ejecting

e.g. Croton+2006, Ciotti&Ostriker2007

Radiative vs. Kinetic

e.g. Zubovas&King 2012, Tadhunter+2014

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI FISICA E ASTRONOMIA

Expectations:

The activity of the SMBH influences the life of the galaxy

MICRO vs. MACRO

LINKING THE MICRO TO MACRO PROPERTIES OF AGN FEEDBACK

AGN FEEDBACK AS OUTFLOWS

Cicone, Brusa et al. 2018 (Nature Astronomy) >10 kpc 1 pc-1 kpc Neutral molecular/atomic Highly ionized gas (X-ray) Ionized (optical) (mm/radio) MAGNUM survey NGC136 (ref.17) ¥ 15-Velocity (km s⁻¹) ionised neutral gas highly-ionised gas molecular and gas (UFOs) Venturi+2018 atomic

Expectations:

The activity of the SMBH influences the life of the galaxy Winds from central SMBH propagate into the host galaxy

Wide-angle, wind-driven outflows, launched from the accretion disk

Observations:

Winds are seen across the electromagnetic spectrum (ionization state, redshift...)

Different tracers probe different phases and different scales (+warm molecular, warm absorbers etc.)

Nardini+2015

Morganti+2016, Cicone+2012

AGN FEEDBACK AS OUTFLOWS

Cicone, Brusa et al. 2018 (Nature Astronomy)

highly-ionised gas (UFOs)

Nardini+2015

neutral gas molecular and atomic

Morganti+2016, Cicone+2012

gas Venturi+2018

Expectations:

The activity of the SMBH influences the life of the galaxy Winds from central SMBH propagate into the host galaxy

Wide-angle, wind-driven outflows, launched from the accretion disk

momentum conserving vs. energy conserving vs. radiation pressure on dust

> Fauchere-Giguere+2012, King2012, Fabian2012 Zubovas&King 2012...2016, Costa+2014, 2018

Main quantities needed to constrain models and propagation mechanisms

outflow mass rate: $\dot{M}_{out} \propto M_{out} V_{out}/R$ kinetic power: $\dot{E}_{out} \propto \dot{M}_{out} V_{out}^2$ momentum flux: $\dot{P}_{out} \propto \dot{M}_{out} V_{out}$

Cicone, Brusa et al. 2018 (Nature Astronomy)

1) Role of ULTRA FAST OUTFLOWS (UFOs) accretion disc winds of highly ionised hot gas with v~0.05-0.5c

l<u>ocal Universe</u>: e.g. Reeves+03, Pounds&Reeves09, Kaastra+14, Tombesi+10,15, Longinotti+16 <u>high-z:</u> e.g Chartas+03,09, Lanzuisi+12,16, Dadina+18 (mostly lensed)

$$\dot{M}_{out} = 4\pi r N_H m_H C_g v_r$$

NAF ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO DI ASTROFISICA E SCIENZA DELLO SPAZIO DI BOLOGNA

Cicone, Brusa et al. 2018 (Nature Astronomy)

1) Role of ULTRA FAST OUTFLOWS (UFOs) accretion disc winds of highly ionised hot gas with v~0.05-0.5c

local Universe: e.g. Reeves+03, Pounds&Reeves09, Kaastra+14, Tombesi+10,15, Longinotti+16 high-z: e.g Chartas+03,09, Lanzuisi+12,16, Dadina+18 (mostly lensed)

$$\dot{M}_{out} = 4\pi r N_H m_H C_g v_r$$

Cicone, Brusa et al. 2018 (Nature Astronomy)

- 2) Importance of spatially resolved spectroscopy revolution of MUSE, ALMA, SINFONI/AO, MaNGA, CALIFA ++
- -> Integral Field Units!

 $\dot{M}_{out} \propto M_{out} V_{out}/R$

RA [d:m:s]

MUSE observations of NGC1365 (MAGNUM sample; Venturi+2018)

Dec [d:m:s]

Cicone, Brusa et al. 2018 (Nature Astronomy)

- 3) Importance of multiphase characterisation Multiphase investigation is needed to get the full picture otherwise highly incomplete
- —> Perfect science topic for synergies

Padovani+2018 (ATHENA+ESO Synergies)

WINDS ARE MULTI-PHASE & MULTI-SCALE

ultra fast outflow

PDS456 z=0.18

Reeves+03,09,14,18
Nardini+15
Luminari+18
Bischetti+19

XMM+Nustar+ALMA

molecular winds (CO(3-2))

WINDS ARE MULTI-PHASE & MULTI-SCALE

XID2028 z=1.592

Brusa+2015a,b Perna+2015 Cresci+2015 Brusa+2018

Ionised outflow ([OIII])

molecular outflow (CO(5-4)

neutral outflow ([MgII])

X-shooter+ Deimos+ ALMA+ SINFONI

cospatial molecular and ionised winds

MAIN LIMITATIONS OF CURRENT STUDIES

<u>Ultra Fast Outflows studied mostly low-z/low-L and at CCD resolution</u>

need high counting statistics to detect absorption lines (>10.000 counts) + velocity (0.05-0.5c) usually known with large uncertainties

Fiore+2017

Tombesi+2019, Astro2020 decadal paper; Cappi+2013 Athena SP; Barret & Cappi 2019

The accretion disc scale is unresolved (would need << mas spatial resolution) UFOs velocity will be characterised with errors of few km/s (!!) Athena will map the stratification and complexity of the accretion disc wind (see also Serafinelli+2019)

MAIN LIMITATIONS OF CURRENT STUDIES

Hot component of QSO winds basically not explored

X-ray observations offer a unique window to probe the physical properties and state of the ISM (e.g. presence of shocks)

Provide a direct/independent constraint on the outflow energy + halo heating (see Roberto's talk, Barret+19)

Need high spectral and spatial resolution

Feruglio+2013, NGC6240

NGC6240 extended X-ray emission Thermal equilibrium plus shock model

Cappi+2013 Athena SP

Importance of high resolution at hard energies

NGC1365 (Venturi+2018)

XIFU Pixel

shocks can be mapped and spatially resolved in local AGN

Relation between hot gas properties/shocks and wind properties can shed light on the origin of the multi-phase structure and constrain models

Teacup (Harrison+2015, Lansbury+2018)

SDSS1356 (Greene+2014)

Teacup (Harrison+2015, Lansbury+2018)

SDSS1356 (Greene+2014)

XIFU Pixel

shocks can be mapped and spatially resolved up to $z\sim0.2$

Relation between hot gas properties/shocks and wind properties can shed light on the origin of the multi-phase structure and constrain models

MAIN LIMITATIONS OF CURRENT STUDIES

Detailed characterisation of single objects

outflows have been studied in great details but this has been limited to single objects and few phases (both at low-z and high-z)

low-z

Nardini+15/Bischetti+19 (PDS456) Feruglio+10,15 Mrk231) Longinotti+18 (IRAS17020) Tombesi+15 (IRASF1119) Greene+12/Sun+14 (SDSS1356) Tadhunter+15 (IC 5063) Serafinelli+19 (PG1114+445)
Feruglio+19 (ESO 428-014)
Perna+19 (Mrk 848)
Ramos Almeida+19 (J1509+0434)
+ MR2251, PG1126 (PI: Cresci),
Circinus, NGC1068, MCG-03-58-007...

<u>high-z</u>

Chartas+2003/Feruglio+2017 (APM0279)

Brusa+2018 (XID2028)

Herrera-Camus+2018 (zC400528)

Vayner+2017 (3C298)

Carniani+2017 (2QZ J0028)

+ SINFONI, ALMA (PI: Cresci, Chartas)

The 2030s will witness a revolution in this field multi-phase outflows will be routinely studied in thousands of sources

Our understanding of SMBH energy-ISM coupling may change dramatically

Key role of Athena / XIFU

Athena in the framework of the 2030s

SUMMARY

Ultra Fast Outflows:

- —> key observables to constrain AGN feedback models but...
 - *duty cycle/energetics vs. AGN properties (e.g. L_{Edd}) unexplored for sources with L~L*
 - * relation between larger scale (molecular/ionised) outflows to be explored on statistical samples

Athena will revolutionise this field (in ~12+ years)

- -> at z~0: factor of 10 lower and unique energy resolution (X-IFU)
- \rightarrow extend up to z~3-4 (WFI survey + X-IFU pointings)

Natural Synergies with longer wavelengths facilities in the 2020-2030 landscape

- —> X-ray detected UFOs primary targets for ALMA & NOEMA (molecular gas) this already happened with APM08279, PDS456, IRASF1119, Mrk231... from z=0 to z=3+
- —> X-ray detected UFOs primary targets for VLT, E-ELT and JWST IFUs (ionised and warm molecular gas)
- —> AGN/QSOs with molecular/ionised outflows primary targets for Athena (XIFU)
- —> Hot components of QSO winds to be explored from scratch (XIFU)

