Theseus Workshop, Naples, 5th-6th October 2017

Fast High Energy Transients and Lobster Eye Optics

Dick Willingale
+X-ray Optics Team
University of Leicester

Detecting High Energy Fast Transients

- Large field of view 1000's square degrees or larger
- High angular resolution ~1 arcmins
- High sensitivity ~10⁻⁹ ergs cm⁻² s⁻¹ 0.3-6 keV
 - in short exposures − ~1-10 sec

 Lobster Eye Telescopes have the unique potential to provide the above!

MPOs and Lobsters in Space

- Bepicolumbo MIXS square pore MPOs
 - launch October 2018
- SVOM MXT narrow field lobster telescope
 - launch 2021
- SMILE CAS+ESA SXI lobster module
 - Launch?
- TAO-ISS wide field lobster module
 - originally proposed NASA Dec 2014
- Einstein Probe 12 wide field lobsters
 - China launch 2020's
- Theseus SXI wide field lobsters
 - Proposed ESA M4 2014
- TAP Transient Astrophysics Probe NASA 2017
 - wide field lobsters

Square Pore MCPs (MPOs)

- Glass plate thickness L=1.0-2.5 mm transmission ∼60%
- Square pores size d=20 or $40 \mu m$, wall~4 μm , L/d~25-125
- Slumped to spherical form R_c=2F

One Square Pore - Lobster Geometry

Each pore splits the aperture into 4 beams

0 reflection1 reflection α1 reflection β2 reflections α,β

All 4 beams are offset from the pore axis by angles α and β

Lobster Geometry — Wide Field

Pores packed on spherical surface radius R_c=2F

Pores point to a common centre of curvature

Focal surface spherical radius F

1 reflection – line focus

2 reflections – true focus

No limit to FOV
If optic wide enough no vignetting

Originally described by Angel 1979

Effective Aperture and PSF

- Distributions of flux from the array of pores
 - 2 reflections from adjacent walls focused spot
 - 1 reflection –
- cross-arms
- 0 reflections straight through
- Multiple reflections from opposite walls
- Aperture circle radius F.d/L($2\sqrt{2+1}$)

Point Spread Function

Lobster Eye Cross-beam

A conventional circular (or square) beam is not useful

Instead we define a crossbeam

Adjust B so that crossbeam contains 50% of detected flux from source B_{HEW}

B_{HEW} is a robust measure of the angular resolution

Lobster Eye PSF - Model Function

$$f(x)=1/(1+(2x/G)^2) + \eta(1-(y/H)^2)$$

$$f(y)=1/(1+(2y/G)^2) + \eta(1-(y/H)^2)$$

$$F(x,y)=f(x).f(y)/(1+\eta)^2$$

3 parameters:

- 1) G Lorentzian width (FWHM)
- 2) H=2d/L
- 3) η is brightness of cross arms wrt to central spot (depends on reflectivity in pores)

Peak set at F(0,0)=1 $\iint F(x,y)dxdy=A_{psf}$ area of PSF in focal plane

Effective beam size $\sqrt{A_{psf}}$ ($\sim B_{hew}$)

Focusing advantage = Collecting area/ A_{psf}

Lobster eye event binning using model PSF

Perform a cross-correlation binning of events to create image $I(i,j) = \sum_k F(i-x_k,j-y_k)$

~530 background counts ~50 source counts

Binned image pixel i,j

X-ray event distribution from detector Event k at x_k, y_k

Equivalent to the cross-correlation with the mask pattern used for a coded mask telescope

Can use this for the on-board search algorithm

Measured PSF at 1.49 keV

X-ray data — Leicester TTF

Simulated PSF

Latest Results - Summary

F=300 mm, module mass 18 kg

Efficiency ~94% theoretical Collecting area at 1.49 keV in full PSF 5.4 cm²

Angular resolution = 6 arcmins (B_{hew} =4 arcmins) Focusing advantage ~90 (c.f. coded mask – factor = 0.5)

- We have MPOs with high efficiency collecting area close to optimum
- We aim to improve the angular resolution to ~5 arcmins this will further increase the focusing advantage and location accuracy
- We can use the PSF model and perform lobster eye event binning to detect the faint fast transients