THESEUS IN THE ERA OF MULTI-MESSENGER ASTRONOMY

G. Stratta *Università di Urbino*

Outline

- Overview of neutrino and gravitational wave (GW) detectors during '20s and '30s
- Promising multi-messenger sources for THESEUS
- The case of NS-NS mergers: expected THESEUS detection rates
- Conclusions

Multi-messenger observations

Two main goals of multimessenger observations are:

to provide a more complete phenomenological picture of several astrophysical phenomena by combining information from different probes

E.g. for GRBs only:

- short Gamma Ray Burst progenitors (→ see D'Avanzo talk)
- From HE neutrino detection/not detection → hints on physics of the prompt emission
- From GW polarization → orbital plane inclination → hints on jet opening angle → accurate energy estimates
- From GW luminosity distance + EM cosmological redshift

 constrain cosmological parameters
- to increase the search sensitivity available by using just a single messenger
 - Low SNR GW event searches can use neutrino and/or EM detection epoch/sky position as priors in data anlysis

The multi-messenger sky

Golden era of multi-messenger astronomy 2028+ **JWST** RadioAstron Sofia JWST **WFIRST** WFIRST/AFTA CHEOPS TESS Solar Orbiter eXTP* Euclid PLATO XMM-Newton Chandra **ATHENA*** MAXI NuSTAR Hitomi POLAR SKA* Spectrum-X-Gamma E-ELT* Einstein Probe eXTP Atl in INTEGRAL AGILE CTA* Fermi DAMPE Lomonosov/MVL-300 2G and 3G GW detectors SKA■ IRAM/NOEMA IceCubeGen2 LSST E-ELT

Einstein Telescope

2024

2028

2030

2026

2022

Year

KM3Net

CTA

2020

KM3NeT ■

2018

H.E.S.S.

IceCube/PINGU ■

Advanced LIGO/Virgo

2014

2016

Neutrino detectors

During the '20s, km3 detectors in both emispheres:

- IceCube km³ facility in the South Pole
- ANTARES in the Mediterrean Sea
- KM3Net in the Mediterrean Sea (construction started by 2015)
- Lake Baikal Neutrino Telescope
 GVD (upgrading to km3)

During the '30s, 10 km3 detectors as IceCubeGen2 will collect high-statistics sample of HE neutrinos (arXiv:1412.5106)

IceCubeGen2 construction timeline

Gravitational Wave detectors

2025+: network of 2G completed

- 2 Advanced LIGO (H+L, USA)
- Advanced Virgo (Italy)
- LIGO-India
- Kagra (Japan)

2030+: 3G (Einstein Telescope, Cosmic Explorer):

~10 times more sensitive --> GW sources 10 times more distant! (e.g. Sathyaprakash 2015)

Source sky localization

GW detectors sky localization

triangulation methods → strongly depends on the number of detectors (with similar sensitivity) observing simultaneously (duty cycle 80% each) (Abbott+2016 LLR,1).

- For example: GW170814
 - ~1160 deg2 with 2 detectors
 - ~60 deg2 with 3 detectors
- Even with full 2G detector network, uncertainties will not be less than few square degrees
- 3G detectors may be just one or two → uncertainties of the order of ~100-1000 deg2

Neutrino detector sky localization uncertainty: ~ 1° or less

→ Survey EM telescopes as THESEUS will play a crucial role in accurately localize MM sources down to arcmin/arcsec level, thus enabling multi-band follow up campaign with ground-based telescopes

GW sources in the THESEUS era

GW sources in the THESEUS era

- Collimated short GRBs
- isotropic X-ray emission
 isotropic kilonova + radio delayed emission

kilonova

GRB+ afterglow

X-ray em.

if HMNS

· Collimated long GRBs

X-ray shock breakout
Type II, Ibc SNe
Neutrinos

- Collimated short GRBs
- isotropic X-ray emission
 isotropic kilonova + radio delayed emission

Neutrinos?

· Collimated long GRBs

X-ray shock breakout Type II, Ibc SNe Neutrinos

Neutrinos?

Collimated short GRBs

isotropic X-ray emission
isotropic kilonova + radio delayed emission

Neutrinos?

GW sources

cc-SNe

- · Collimated long GRBs
- X-ray shock breakout Type II, Ibc SNe Neutrinos

Neutrinos?

isotropic X-ray emission
isotropic kilonova + radio delayed emission

Neutrinos?

NS-BH

cc-SNe

Instabilities

phenomena

in NSs

1-10000 Hz

GW sources

- · Collimated long GRBs
- X-ray shock breakout Type II, Ibc SNe Neutrinos

Neutrinos?

isotropic X-ray emission
isotropic kilonova + radio delayed emission

Neutrinos?

NS-BH

GRB + afterglow X-ray em. kilonova if HMNS

cc-SNe

1-10000 Hz

GW sources

Short GRBs from NS-NS mergers

X-ray emission from NS-NS mergers

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Abadie et al. 2010

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Abadie et al. 2010

40/yr up to 0.4-0.5 Gpc

2G GW detectors

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction collimated towards us

40/yr up to 0.4-0.5 Gpc

2%-20%(assuming a half-jet angle θ_{jet}=[10°- 40°], e.g.
Rezzolla+2011)

2G GW detectors

GW detectors

2G

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction collimated towards us

Fraction within XGIS FoV

40/yr up to 0.4-0.5 Gpc

2%-20% (assuming a half-jet angle θ_{jet} =[10°- 40°], e.g. Rezzolla+2011)

FoV_{XGIS} → 50%

~[0.5-5]/yr

GW detectors

2G

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction collimated towards us

Fraction within XGIS FoV

40/yr up to 0.4-0.5 Gpc

2%-20% (assuming a half-jet angle θ_{jet} =[10°- 40°], e.g. Rezzolla+2011)

FoV_{XGIS} → 50%

~[0.5-5]/yr

+ off-axis GRB detection!

Expected rate of joint X-ray+GW detection with THESEUS/SXI

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

40/yr up to 0.4-0.5 Gpc

GW detectors 2G

Expected rate of joint X-ray+GW detection with THESEUS/SXI

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction with isotropic X-ray emission

40/yr up to 0.4-0.5 Gpc

30%-60% (see Gao+2016, Piro+2017)

2G GW detectors

Expected rate of joint X-ray+GW detection with THESEUS/SXI

GW detectors

2G

Fraction with isotropic X-ray emission

Fraction within SXI FoV + ~60% can be followed up

40/yr up to 0.4-0.5 Gpc

30%-60% (see Gao+2016, Piro+2017)

[6-12]/yr

3G GW detector's distance reach of CBC

detectors

GW

2G

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction collimated towards us

Fraction within XGIS FoV

40/yr up to 0.4-0.5 Gpc

2%-20% (assuming a half-jet angle θ_{jet} =[10°- 40°], e.g. Rezzolla+2011)

FoV_{XGIS} → 50%

~[0.5-5]/yr

>10000/yr up to 15-20 Gpc

By 2030+ the number of joint short GRB+GW with THESEUS depends on XGIS sensitivity to short GRBs, estimated to

~[15-25] / yr

3**G GW** detectors

Expected rate of joint X-ray+GW detection with THESEUS/SXI

GW

2G

NS-NS rate 10-10000 Gpc⁻³yr⁻¹

Fraction with isotropic X-ray emission

Fraction within SXI FoV + those that can be followed up

40/yr up to 0.4-0.5 Mpc

detectors 30%-60% (see Gao+2016, Piro+2017)

> FoV_{SXI} →8% 60% in FoR \rightarrow 40% [6-12]/yr

Summary

- THESEUS will fly in the golden era of multi-messenger astronomy
- MM sources that THESEUS can potentially detect in X-rays and gammarays are:
 - NS-NS/NS-BH mergers,
 - core collapse massive stars and
 - SGR/intermediate+giant flares
- NS-NS mergers are expected to produce a collimated short GRB and an isotropic X-ray emission if a NS remnant is formed after the merger
- During 2G GW detectors era, due to their limited distance reaches (NS-NS at z<0.1), isotropic X-ray emission from NS-NS maybe the dominant MM target for THESEUS/SXI
- During 3G GW detectors era, thousands of NS-NS systems will be detected up to z~2 and short GRBs + space missions capable to detect and localize them as THESEUS, will play a fundamental role in MM astronomy by that time

Extra slides

Short GRB redshift distribution (Berger 2014)

GW source sky localization accuracy

The "jet-break" is produced when the relativistic opening angle within which ejecta radiates (that increases due to the ejecta deceleration) equals the jet cone aperture.

Clark+2015

Can a binary black hole merger produce a detectable EM transient?

We don't expect a stellar-mass binary black hole system to have enough matter around for the final BH to accrete and form a relativistic jet [e.g., Lyutikov, arXiv:1602.07352] — or can it? Various models have been proposed:

Single star [Fryer+ 2001; Reisswig+ 2013; Loeb 2016, ApJL 819]: collapse of a very massive, rapidly rotating stellar core, which fissions into a pair of black holes which then merge; but see Woosley, arXiv:1603.00511v2 for modeling that does not support

Instant BBH [Janiuk+ 2013, A&A 560; arXiv:1604.07132]: massive star-BH binary triggers collapse of star to BH, then immediate inspiral and merger; final BH can be kicked into circumbinary disk and accrete from it

BBH with fossil disk [Perna+ 2016, ApJL 821]: activates and accretes long-lived cool disk

BBH embedded in AGN disk [Bartos+, arXiv:1602.03831; Stone+ 2016, MNRAS]: binary merger assisted by gas drag and/or 3-body interactions in AGN disk, which provides material to accrete

Third body [Seto&Muto 2011, cited in Murase+ 2016, ApJL 822]: tidal disruption of a star in a hierarchical triple with the BBH at time of merger

Charged BHs [Zhang 2016, ApJL 827; Liebling&Palenzuela 2016, PRD 84]: Merging BHs with electric (or magnetic monopole!) charge could produce a detectable EM transient

Magnetic reconnection [Fraschetti, arXiv:1603.01950]

Also models for high-energy neutrino and ultra-high energy cosmic ray emission

Review – courtasy of Peter Shawhan (Maryland)

NS-NS/NS-BH EM counterparts

Binary Black Hole Masses

Expected BBH rate

BBH rate from Abadie+2010

New constraints from O1 for BBH population are: **9-240 Gpc**⁻³ **yr**⁻¹

High significance BBH detections:

- · O2:
 - ~90% probability to see >2 BBH
 - ~50% to see >10 BBH
- · O3:
 - ~90% of probability to see > 10 BBH
 - ~60% of probability to see >40 BBH

"BBH Mergers in the first aLIGO observing run" Abbott+2016, ApJL in pres

Expected BNS rate

O1 no BNS detections still consistent with expectations

 $R_BNS < 12600 \text{ Gpc}^{-3} \text{ yr}^{-1}$

O2 expected number of BNS is: 0.006-20 (Abbott+2016 LRR, for 6 months of LIGO+Virgo)

"Upper limits on the rates of BNS and NSBH from aLIGO first observing run" Abbott+2016 arXiv: 1607.07456v1.

TABLE IV: Compact binary coalescence rates per Mpc³ per Myr.^a

Source	$R_{ m low}$	$R_{ m re}$	$R_{ m high}$	$R_{\rm max}$
$NS-NS (Mpc^{-3} Myr^{-1})$	0.01 [1]	1 [1]	10 [1]	50 [16]
$NS-BH (Mpc^{-3} Myr^{-1})$	6×10^{-4} [18]	0.03[18]	1 [18]	
$BH-BH (Mpc^{-3} Myr^{-1})$	$1 \times 10^{-4} [14]$	0.005 [14]	0.3[14]	

TABLE V: Detection rates for compact binary coalescence sources.

IFO	$Source^a$	$\dot{N}_{ m low}$	$\dot{N}_{ m re}$	$N_{ m high}$	$\dot{N}_{ m max}$
		$ m yr^{-1}$	$\rm yr^{-1}$	$ m yr^{-1}$	yr^{-1}
Initial	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01^{c}
	IMBH-IMBH			10^{-4d}	10^{-3e}
Advanced	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^b	300^{c}
	IMBH-IMBH			0.1^d	1^e