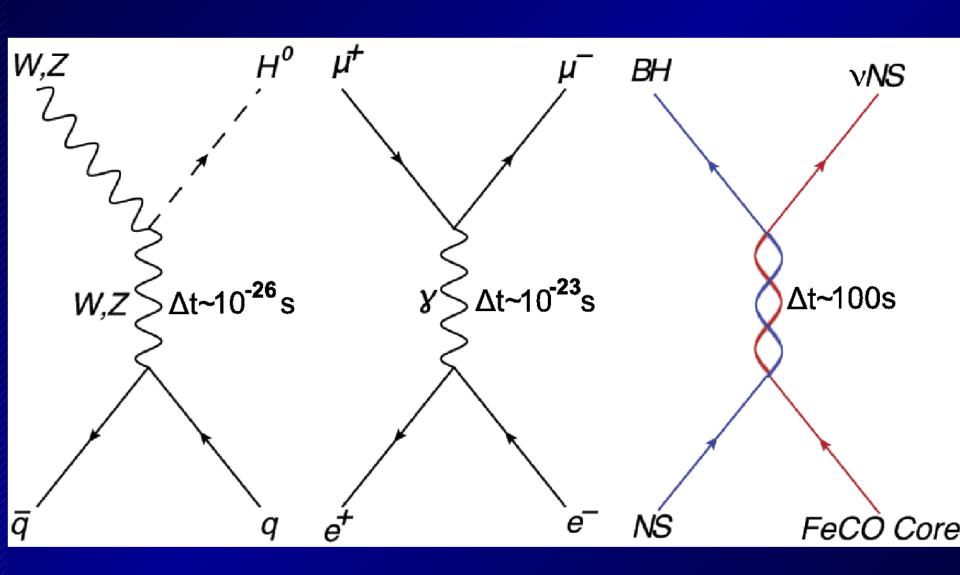
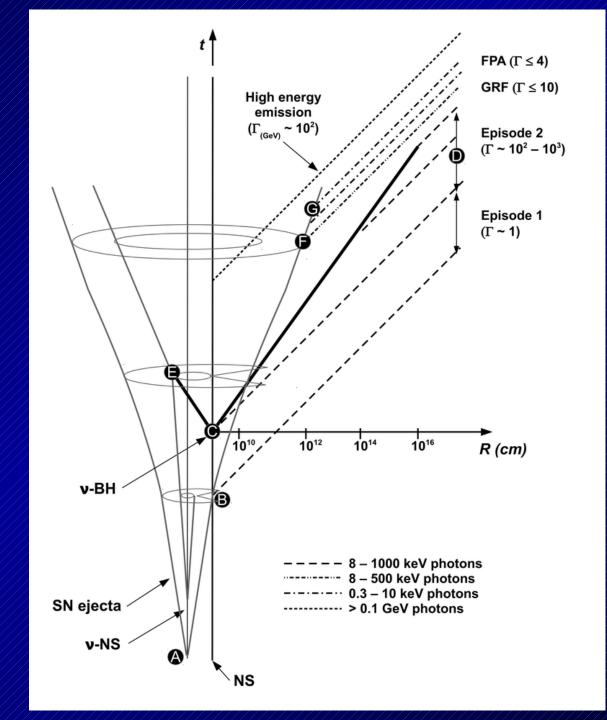
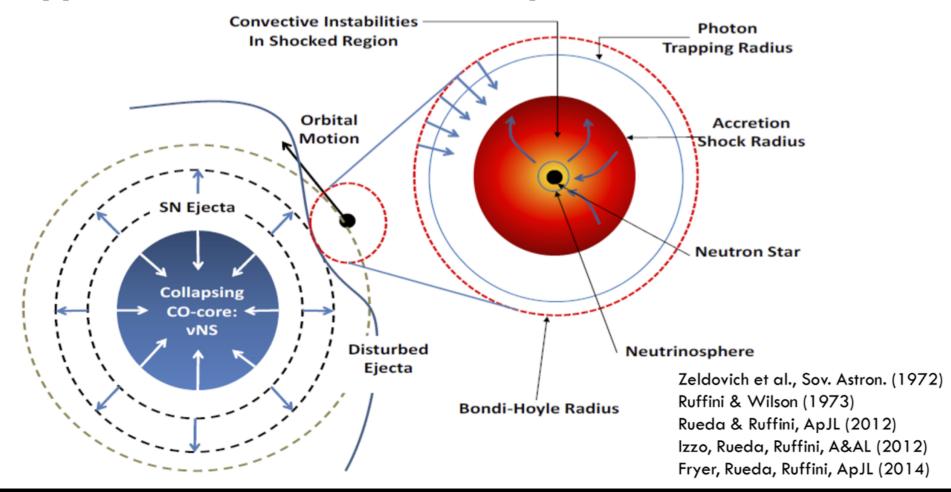

Specific examples of separatrix between the collapsar and the BdHN models of GRBs

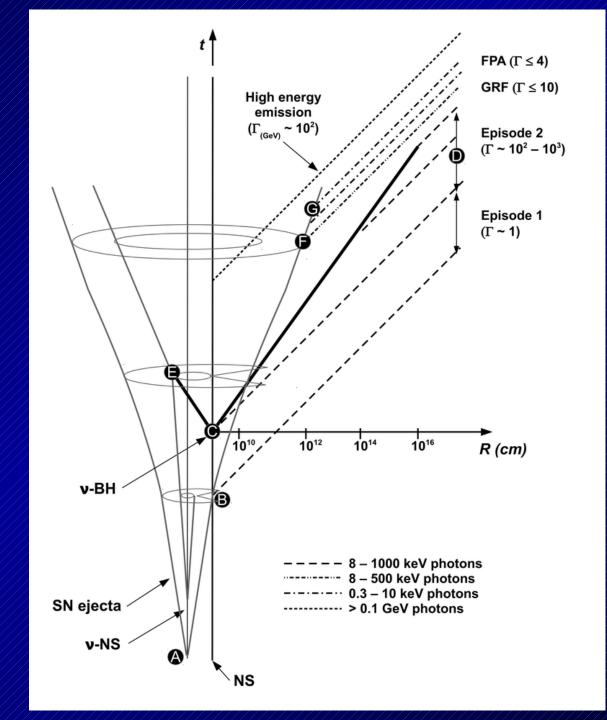
Remo Ruffini and collaborators


ICRANet Pescara – Nice – Rio – Rome – Yerevan Università "La Sapienza" - Rome


> Theseus Workshop Napoli, 5-7 October 2017

GRB FIREBALL MODEL

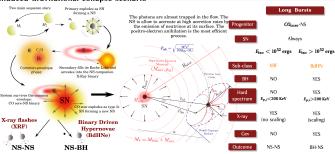

S-Matrix vs. Cosmic Matrix



Hypercritical Accretion, Binary-Driven HNe, and IGC

Poster by Becerra et al.

ON THE INDUCED GRAVITATIONAL COLLAPSE SCENARIO



L. Becerra^{1,2}, C.L. Bianco^{1,2}, C. L. Fryer³, I.A. Rueda ^{1,2}, R. Ruffini^{1,2} ¹Dipartimento di Fisica and ICRA, Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Rome, Italy ² ICRANet, P.zza della Repubblica 10, I-65122 Pescara, Italy ³CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545

The induced gravitational collapse (IGC) paradiem has been successfully applied to the explanation of GRB-SNe and Xray flashes (XRF). The progenitor is a tight binary system composed of a CO core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion. In a first scenario, also referred as binary-driven hypernova (BdHNe), the CO-NS binary is enough bound ($a < 10^{11}$ cm), so the accretion rate onto NS grows up to $> 10^{-2}~M_{\odot}/s$, this allows to the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission with $E_{\rm iso} > 10^{52}$ erg. A second scenario can happen for binary systems with larger binary separations, then the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse. Instead of a GRB emission, a X-ray flash (XRF) is produced with $E_{\rm iso} \, < \, 10^{52}$ erg. We present numerical simulations of the IGC. We simulate the SN explosion and the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS We address the observational features of this process and its detectability occurring during the different phases of the IGC process: from the early accretion, to the possible collapse of the companion NS to a BH, to the interaction of the radiation of the above accretion process with the supernova ejecta.

Induced Gravitational collapse scenario

Figure 1: The theoretical framework and the first estimates of the hypercritical accretion onto the NS as a function of the nature of the binary parameters were first presented in Rueda as

HYPERCRITICAL ACCRETION INDUCED BY THE SUPERNOVA AND NS GRAVITATIONAL COLLAPSE

The rate at which the neutron star accretes mass can be estimate through the Bondi-Hoyle formalism (Hoyle and Lyttleton, 1939; Bondi and Hoyle, 1944; Bondi, 1952):

$$\dot{M}_B(t) = \pi \rho_{\rm ej} R_{\rm cap}^2 \sqrt{v_{\rm orb}^2 + v_{\rm ej}^2 + c_{\rm s,ej}^2}$$
 with $R_{\rm cap} = \frac{2GM_{\rm NS}}{v_{\rm orb}^2 + v_{\rm ej}^2 + c_{\rm s,ej}^2}$, (1)

where G is the gravitational constant, ρ_{ej} is the density of the SN ejecta, $c_{s,ej}$ the sound speed of the ejected material and v_{ej} the ejecta velocity. Assuming a homologous expansion for the ejected material, the SN-velocity and the SN-density evolves as:

$$v_{e|f}(r,t) = n\frac{r}{t} \Rightarrow \begin{cases} R_{tarr}(t) = R_{0_{tate}} \left(\frac{t}{6}\right)^{\alpha} \\ \\ v_{tater}(t) = v_{0N} \left(\frac{t}{6}\right)^{\alpha-1} \end{cases} \text{ and } \rho_{e|f}(x,t) = \rho_{e|f}^{0} \left(\frac{r}{R_{tater}(t)}, t_{0}\right) \frac{M_{emr}(t)}{M_{emr}(t_{0})} \left(\frac{R_{0_{tater}}}{R_{tater}(t)}\right)^{3} \\ \\ v_{tater}(t) = v_{0N} \left(\frac{t}{6}\right)^{\alpha-1} \end{cases}$$

with $ho_{
m el}^0$ the pre-supernova density profile and $R_{
m star}$ the outermost layer of the SN ejecta.

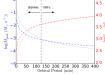
Table I: Properties of the pre-supernova CO cores obtained with the kepler stellar evolution code (Woosely et. al, 2002).

Analitical fit: $ ho_{\rm ej}^0 = \hat{ ho}_{ m core} \ln \left(rac{r}{\hat{R}_{ m core}} ight) \left(rac{R_{ m star}}{r} - 1 ight)^m$					
Progenitor M _{ZAMS} (M _☉)	ρ _{core} (10 ⁸ g cm ⁻³)	R _{core} (10 ⁷ cm)	M _{env} (M _☉)	R _{star} (10 ⁹ cm)	m
15	3.31	5.01	2.079	4.49	2.771
20	3.02	7.59	3.89	4.86	2.946
30	3.08	8.32	7.94	7.65	2.801

If we want to discriminate the binary parameters of the systems in which the NS can reach, by accretion, its critical mass (Mertt) and consequently collapse to a BH, from the systems in which the accretion is not sufficient to induce such a collapse, we need to determine how the NS evolves during the accretion process. In general, the evolution of the NS gravitational mass, MNS can be written:

$$\dot{M}_{\rm NS}(t) = \frac{\partial M_{\rm NS}}{\partial M_b} \dot{M}_b + \frac{\partial M_{\rm NS}}{\partial J_{\rm NS}} \dot{J}_{\rm NS},$$

where J_{NS} and M_b are the NS angular momentum and


We assume that all the mass entering the NS capture region will be accreted by the NS as baryonic mass (Cipolletta et al, 2015):

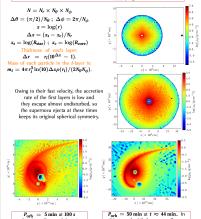
$$M_b(t) = M_b(t_0) + M_B(t), \qquad {\rm with} \qquad \frac{M_b}{M_\odot} = \frac{M_{\rm NS}}{M_\odot} + \frac{13}{200} \left(\frac{M_{\rm NS}}{M_\odot}\right)^2 \left(1 + \frac{1}{137} j_{\rm NS}^{1/7}\right),$$

Then, by angular momentum conservation, the torque on the NS by accretion is:

$$\dot{I}_{\rm NS} = \xi I(R_{\rm in})\dot{M}_{\rm B} \quad \text{with} \quad \xi < 1 \quad \text{and} \quad I(R_{\rm in}) = \begin{cases} I_{\rm K}(R_{\rm NS}), & \text{for } R_{\rm NS} > \eta_{\rm so} \Rightarrow R_{\rm in} = R_{\rm NS}, \\ I_{\rm iso}, & \text{for } R_{\rm NS} \le \eta_{\rm so} \Rightarrow R_{\rm in} = \eta_{\rm so}. \end{cases} \tag{4}$$

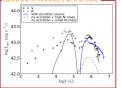
where $R_{\rm in}$ is the disk inner boundary radius, $l(R_{\rm in})$ is the angular momentum per unit mass of the material located at $r=R_{\rm in}$, and ξ is the efficiency of the angular momentum transfer.

(a) Peak accretion rate (\dot{M}_{peak}) and peak time (t_{peak}) as a function of the orbital period. This example corresponds to a CO core from the 20 M_{ZAMS} progenitor, a 2.0 M_{\odot} NS mass

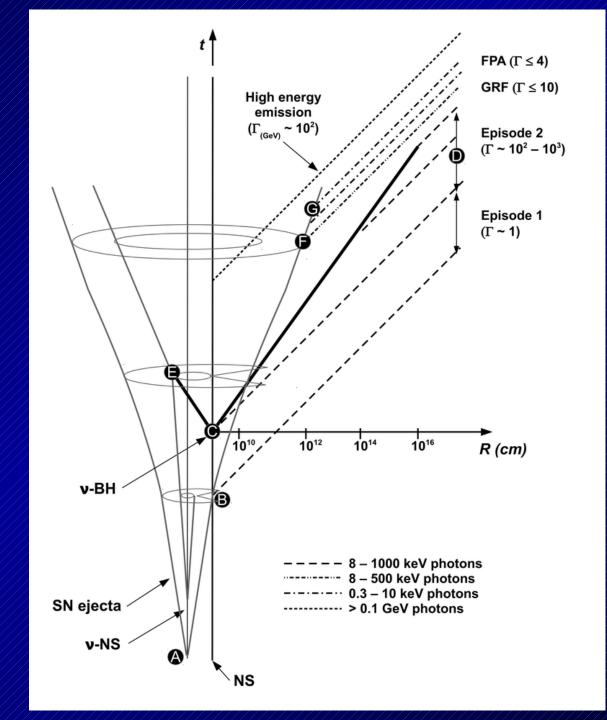


orbital period for which the NS with initial ma

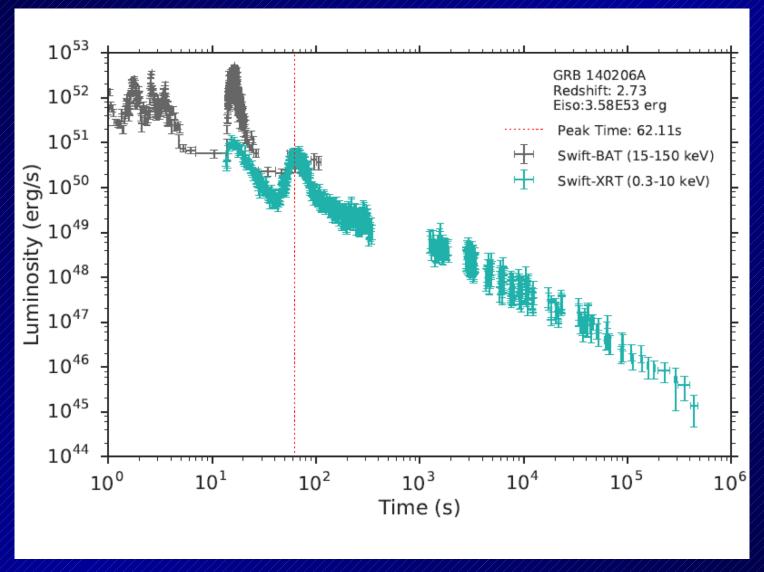
SUPERNOVA EJECTA ASYMMETRIES INDUCED BY THE NS


For supernova explosions occurring in close binaries with compact companions such as NSs or BHs, like the case of the IGC scenario, the supernova ejecta is subjected to a strong gravitational field which produces a deformation of the supernova fronts closer to the accreting companion. In order to visualize this, we have simulated the evolution of the supernova layers in the binary system by dividing the SN ejecta in N particles of different mass and following its three-dimensional motion under the action of the gravitational field of the orbiting NS. We have varied the NS gravitational mass with equations (I) and (2) and also, we have removed from the simulation the particles that are crossing the Bondi-Hoyle radius. The initial powerlaw density profile of the CO envelope is simulated by populating the inner layers with more particles. For symmetry reasons, we simulate only the north hemisphere of the supernova.

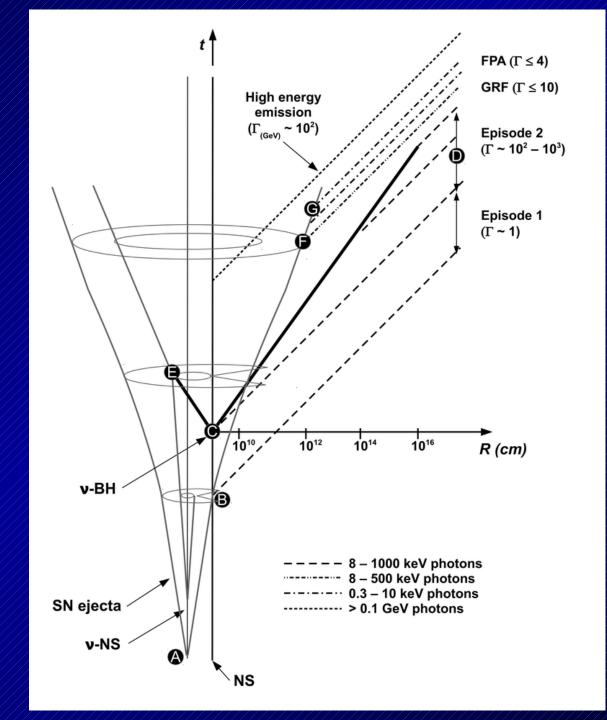
> The initial binary system is formed by a 2 Mo. NS and the CO-core of a 30 Mzams progenitor


It sees the increasing asymmetry of the supernova ejecta around the orbital plane

The early part of the light-curve ($t \lesssim 10^3$ s) has been fitted with the luminosity expected from the accretion process on the NS companion $(L_{acc} = (\dot{M}_b - \dot{M}_{NS})c^2)$. For the long-lasting X-ray plateau in the afterglow (at times $t\sim 10^3$ - 10^6 s) we need to analyze the emission of the supernova at early stages. We have calculated the shock breakout luminosity using the light-curve code described in Bayless et al. (2015). To simulate the energy that the hypercritical accretion process onto the NS adds to the ejecta, we injected it as an energy source at the base of the explosion and to mimic the asymmetries in the SN ejecta, caused by the NS companion presence, we have modeled a series of spherical explosions with different densities. We assume an initial explosion energy of 2×10^{51} erg, ranging the spherical equivalent-mass from 0.05-4 M_☉.



after the collapse of the NS.


The light-curve in both bands peaks first near 50,000 s and then again at 500,000 s. Using our 1 M_☉ ID model from our X-ray emission, we simulate the V and B band light-curves. Without either ⁵⁶Ni decay or accretion energy, the supernova explosion only explains the first peak. However, if we include the energy denosition from the accretion onto the NS (for our energy deposition, we use 4×10^{46} erg s⁻¹ over a 2500 s duration), our simulations produce a second peak at roughly 500,000 s. A second peak can also be produced by increasing the total ⁵⁶Ni yield. However, even if we assume half of the total ejecta is ⁵⁶Ni, the second peak remains too dim to explain the observations.

Gamma-Ray Flares vs. X-Ray Flares

See talk by Wang Y. this afternoon

Short GRB GeV emission

