THESEUS Workshop, Napoli, October 5, 2017

Preliminary THESEUS Configuration - Emiliano Capolongo (OHB-I)

- Profile Mission Requirements Overview
- Configuration Drivers
- Baseline Configuration
- Payload module
- Service module
- Launcher Accomodation
- Preliminary Budgets: Mass & Power

THESEUS Summary of Main Requirements

Requirement ID	Description	Reference		
Top level Requirements				
REQ-SCI-010	GRBs census	Explore the early Universe with a complete census of GRBs in the 1st billion years		
REQ-SCI-020	GW and cosmic neutrino	Identify and study GW and cosmic neutrino astrophysical sources through an unprecedented exploration of the time- domain Universe in X-rays		
Science Requirements				
REQ-SCI-030	Number of GRB	30 GRBs with measured z > 8		
REQ-SCI-040	New transient/variable	Hundreds of new transient / variable high energy sources per year		
REQ-SCI-050	Sources position	X-ray positions at <1° (soft band) and at < 5' (hard band)		
REQ-SCI-060	Triggers range	0.3 keV -10 MeV		
REQ-SCI-070	Transient light curves	Transient light curves over seconds to months		
	Istrument require	ments		
REQ-INS-100	Soft X-ray	1 sz FOV 1000s zensittvíty 1x10-10 egs in 0.3-5 keV) PSF FWHM 4.5' 150 eV FWHM @ 6 keV On-board multi-timescale image trigger		
REQ-INS-200	Hard X-ray	1.5 ar FOV 1s sensitivity 300 mCrab in 2-30 keV 300 eV FWHM @ 6 keV On-board multi-timescale image trigger		
REQ-INS-300	Optical/IR	Imasins, lo-res & hi-res spectra 10'x10' FOV Positions <1" H = 20.6 in 300s @ SNR 5		

Mission Requirements				
REQ-MIS-010	Identification of bursts/transients	THE SEUS wide field instruments, SXI and XGIS, will monitor a wide area of the sky, and when detecting a burst will generate an Burst/transient alert. Providing to the spacecraft the data about position (maternion) and time occurrence.		
REQ-MIS-020	Orbit	Circular Low Earth Orbit Altitude: 535 to 600 km (TBC) Inclination ≤6 deg This orbit granung a row and stable background level in the high-energy instruments, allowing a successfully observation of faint X-ray sources.		
REQ-MIS-030	Satellite LoS	The Satellite Line of Sight (LoS) is assumed to be the boresight direction of the IRT. The river of this requirement is the high pointing accuracy of IRT.		
REQ-MIS-040	Sky accessibility	Theseus Field of Regards (FoR) 64% of the sky. The FoR driver is the achievement of a large Sky accessibility taking into account the constraints, e.g. Sun, Earth, GC.		
REQ-MIS-050	Alignment	The Theseus Payload design and performance shall be compatible with an alignment of XGIS and SXI Detector Assembly (each composed by a group of individual Detector Unit) with respect to the IRT LoS. The combined Field of view is shown in Figure 21.		
REQ-MIS-060	Pointing	See Table 14. The pointing requirement are driven by the IRT telescope which has the higher angular resolution and needs also stability for the spectroscopy.		
REQ-MIS-070	On-board time management	To guarantee the precise time tagging in every condition, the S/C will be able to provide to each Instrument a Pulse Per Second (PPS) with a accuracy ≤1µs at 3 sigma.		
REQ-MIS-080	Satellite slewing capability	In the occurrence of a Burst/Transient alert the satellite shall activate, autonomously from the ground control, a slewing manoeuvre to point the burt/transient identified direction with an agility better than ~60°/10min		

THESEUS instruments FoV & pointing Requirements

Instrument	Single Detector FoV	Overall FoV
SXI (4 DU)	26°x31°	104°x31°
XGIS (3 DU - 35 ° off-set)	64°x64°	124°x64°
IRT (max Fov)	10'x10'	10'x10'

Pitch & yaw [roll]	SXI	XGIS	IRT
APE (3 sigma, arcsec)	120 [270]	120 [270]	120 [270]
AMA (3 sigma, arcsec)	3 [90]	3 [90]	3 [90]
APD (3 sigma, arcsec) on observation time of 30 minutes	N.A.	N.A.	10 (TBC)
RPE/Jitter(3 sigma, arcsec) on exposure time of 10 seconds	N.A.	N.A.	1 [1]

THESEUS Satellite Configuration Drivers (1/2)

- The IRT LoS is the main reference of the overall payload.
- No single/total FOV obstructions
- SXI and XGIS alignment have to take into account the LoS and FoV of each individual DU. The alignment accuracy of each SXI/XGS Detector Unit with respect to the IRT LoS should be within 1-2 arcmin.
- Payload instruments are distributed around the longitudinal axis of the satellite and mounted as close as possible to it in order to:
 - Minimize S/C Mol
 - Support efficient load transfer from the spacecraft to the launch vehicle
- Embedding part of the IRT into the S/C structure, with S/C symmetry axis aligned to IRT LoS, increases the S/C compactness

THESEUS Satellite Configuration Drivers (2/2)

- The 4 SXI modules are nominally mounted close to IRT on the opposite side of the solar panels; this will ensure to keep them in the coldest side of the satellite and to have the largest area of the observable sky when THESUES lies between Sun and Earth
- The SXI DUs positions and orientations are determined in such a way that:
 - no X-rays reflected by IRT tube or any other structure can enter into SXIs FOV,
 - single FOVs do not interfere to each other,
 - the SXI FOV surrounds the smaller IRT FOV.
- The accommodation of a IRT cryocooler have to take care of radiator position and micro-vibration minimization

THESEUS Baseline Configuration

Instruments Combined FoVs

THESEUS Payload Module

Thermal Design:

Radiators

MLI

MPTC

Structure:

Shear Panels Internal Cylinder

Instrument Element	Operative range (°C)	Cooling
SXI- structure/optics	-20 ÷ +20	passive
SXI- detectors	-65	active
XGIS-detectors	-20 ÷ +10	passive
IRT-structure	-30	active
IRT-optics	-83	active

THESEUS Platform Block Diagram

THESEUS Accommodation within VEGA-C Fairing

Preliminary Mass & Power Budgets

FUNCTIONAL SUBSYSTEMS	Basic Mass (kg)	Margin (%)	Margin (kg)	Current Mass (Kg)
SERVICE MODULE				
AOCS (gyro, RW, SAS, ST)	115,1	10%	11,5	126,6
PDHU + X BAND	31,4	10%	3,1	34,5
DATA HANDLING	24,4	5%	1,2	25,6
EPS (PCU, Battery, SA)	85,1	10%	8,5	93,6
SYSTEM STRUCTURE	129,1	10%	12,9	142,0
PROPULSION	17,0	15%	2,5	19,5
THERMAL CONTROL (heaters+blankets)	14,2	10%	1,4	15,6
HARNESS	46,0	20%	9,2	55,2
Total Service Module Mass	462,3	11%	50,5	512,8
PAYLOAD MODULE				
SXI	100,0	20%	20,0	120,0
XGIS	93,0	20%	18,6	111,6
IRT	94,2	20%	18,8	116,0
i-DHU + i-DU + NGRM + TBU + harness (TBC)	23,1	20%	4,6	27,7
Total P/L Module Mass	310,3		62,1	375,3
H . 10 . 1 . 1 . 1 . 1 . 1				

FUNCTIONAL SUBSYSTEMS	Nominal Avg Power (Watt)	Margin (%)	Margin (Watt)	Current Avg Power (Watt)
SERVICE MODULE				
AOCS	79	10%	8	87
DATA HANDLING	3 7	10%	4	41
EPS	39	10%	4	43
PROPULSION	1	10%	0	1
THERMAL CONTROL (incl. PLM)	83	20%	17	100
PDHU + X BAND	42	10%	4	46
Total Service Module Power	282	13%	36	318
PAYLOAD MODULE				
SXI	93	20%	19	111
XGIS	75	20%	15	90
IRT	96	20%	19	115
NGRM+TBU	93	20%	19	111
I-DHU + i-DU (TBC)	25	20%	5	30
Total Payload Module Power	381	20%	76	457

Total Service Module Mass (kg)	512,8
Total Payload Module Mass (kg)	375,3
System level margin (20%)	177,6
Dry Mass at launch (kg)	1065,6
Propellant	100,0
Launcher adapter	31,7
Total mass at launch (kg)	1197,3

Satellite Nominal Power (W)	
Service Module	282
Payload Module	381
20% System Margin	132
Harness Loss	18
Total power with losses and margin	813

October, 5 2017 Theseus Workshop - Napoli

<u>bmorelli@cgspace.it</u>, <u>ecapolongo@cgspace.it</u> OHB-l <u>info@gpadvancedprojects.com</u> GPAP