

THESEUS AND THE GRB-COSMOLOGY

L. Izzo

(IAA-CSIC/HETH - Granada)

Ext. coll.: M. Muccino, M. Della Valle, G.B. Pisani, E. Zaninoni, L. Amati

HETH: C. Thöne, A. de Ugarte Postigo, Z. Cano, D.A. Kann

GRB-cosmology

"explore the physical conditions of the Early Universe (the cosmic dawn and re-ionization era) by unveiling the GRB population in the first billion years"

- SFR at high-redshift
- characterise physical properties of GRB hosts up to z~10 (metallicity, ionisation, stellar age...)
- first galaxies and cosmic re-ionisation
- distance indicators (?)

Introduction

GRBs are located in the brightest (H II) regions of their host galaxies

Bloom+2002 Fruchter+ 2006 Blanchard+ 2016

GRB host galaxies are generally faint star-forming systems

Large GRB luminosities -> occasion to detect and study the properties of galaxies that would remain undetected (while general galaxy surveys at high-z are biassed toward bright systems)

SFR at high-z

Kistler+ 2009 Trenti+ 2012

SFR through:

- a) Halpha emission line (z < 1.8)
- b) UV light (z > 4)

Kennicutt 1989

Madau+ 2014

gas, dust & metals

"long GRBs mainly form in sub-solar metallicity environments, but a notable fraction of GRB hosts shows near-solar metallicities"

GRB immediate environs

"slit spectra measurements of GRB hosts are averaged across the entire host -> metallicities (SFR...) do not reflect the progenitor star abundances..."

spatially-resolved spectroscopy

- resolution ~ 0.5-1kpc
- Z variations ~0.3dex

Sanchez+ 2014; Kruhler+ 2017

low-z distance indicators

Expanding Photosphere applied to GRB-SNe

1) BVR luminosity - decline relationship

2) correction for the dilution factor

"in recent years, the existence of correlations between GRB observables with total energy/luminosity emitted has been confirmed"

Amati+ 2009

$$E_p$$
 - $E_{X,iso}$ - $E_{Y,iso}$

Amati+ 2002

Bernardini+ 2012

+ others (next talks...)

Combo relation

$$\log\left(\frac{L_0}{\text{erg/s}}\right) = \log\left(\frac{A}{\text{erg/s}}\right) + \gamma \left[\log\left(\frac{E_{p,i}}{\text{keV}}\right) - \frac{1}{\gamma}\log\left(\frac{\tau/\text{s}}{|1 + \alpha_X|}\right)\right]$$

- small data scatter σ =0.28
- 60 GRBs no outliers !!!

- LC fitting procedure (SN-like)
- accurate calibration

Recent compilation

132 GRBs up to Dec 2016
(still no outliers)
tight constraints on
cosmological parameters

$$\mu_{GRB} = -97.45 + \frac{5}{2} \left[\mathcal{A} - \psi(\gamma, E_{p,i}, \tau, \alpha_X, F_0) \right]$$

Results

$$\Omega m = 0.28 (+0.09, -0.07)$$

Results

$$w = -1$$
 OK up to $z\sim3.5$

from z > 4 some deviation is observed

(low number of GRBs ~10)

Simulating THESEUS GRBs

800 GRBs (photo-z expectations)

Conclusions

"...understand the evolution history of the Universe at very large redshifts, where no astrophysical probe has gone before..."

THESEUS will improve our knowledge of the Universe at ALL redshifts

- low-z : localise nearby GRBs and their hosts, measure H0, determine the z_{tr} more GRB-SNe...
- high-z : SFR evolution, metallicities at high-z, test of LCDM model and possible evolution of w

Thanks for the attention

