Numerical Simulations of Photospheric Emission from Collapsar Jets

Hirotaka Ito RIKEN

Collaborators

Jin Matsumoto (Leeds Univ.)

Shigehiro Nagataki (RIKEN)

Don Warren (RIKEN)

Maxim Barkov (Perdue Univ.)

Daisuke Yonetoku (Kanazawa Univ.)

Tight correlation between $E_p - E_{iso,} E_p - L_p$

Powerful diagnostics for emission mechanism

Can photospheric emission reproduce this relation?

Photospheric Emission in GRB jet

<u>Dynamics</u> of Jet and Radiation transfer must be solved

Previous Studies

steady outflow or 1D model

Pe'er +2005,2006,2011; Giannios 2008; Beloborodov 2010,2011; Vurm+2011,2016; Lundman+2013,2014, Ito+2013,2014, Chhotray 2015

approximated treatment for radiation

Lazzati+2009,2011,2013; Mizuta+2011; Nagakura+2011; Lopez-Camara+2014

This Study

Radiation transfer calculation based on 3D hydrodynamical simulation => *Ep - Lp*

3D relativisitic hydrodymaical simulation

Calculation of relativistic jet breaking out of massive progenitor star

Progenitor star

16TI (Woosley & Heger 2006)

M* ~14Msun

R* ~ 4 × 10¹⁰ cm

Jet parameter

$$L_{j}$$
 = 10⁴⁹, 10⁵⁰ ,10⁵¹ erg/s
 θ_{j} = 5°
 Γ_{j} = 5
 Γ h = 500, 900

3 models with different power

Radiative transfer calculation

Propagation of photons are calculated until they reach optically thin region

fiducial model $L_j = 10^{50}$ erg/s

fiducial model $L_j = 10^{50}$ erg/s

 E_p & L_p decline as Θ_{obs} increases

Dependence on jet power

$$L_{\rm j} = 10^{49} \, {\rm erg/s}$$

$$L_{\rm j} = 10^{50} \, {\rm erg/s}$$

$$L_j = 10^{51} \text{ erg/s}$$

L_p & E_p are systematically higher for higher L_j

E_p & L_p decline as Θ_{obs} increases

lateral structure of jet induces the viewing angle dependence

Yonetoku relation

Remarkable match with observations

High polarization (>10%) at large Θ_{obs}

Summary

Yonetoku relation is an inherent feature of photospheric emission

Lateral structure of jet developed during propagation is an origin of the correlation between Ep & Lp

This relation holds regardless of the jet power

Compelling evidence of photospheric emission as a dominant radiation mechanism for GRBs

Prediction of high polarization at large viewing angle