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Our focus:

• Temporal properties of GRBs and their relations to the internal
properties:
▪ lag-luminosity relation
▪ duration-luminosity relation
▪ lags as a consequence of the GRBs spectral evolution

• Amati-like relations linking the energy with the spectral properties;

• Internal shock processes in the relativistic wind;

• Opening angles in beamed GRBs.



Light curves versus PDS

The light curves of GRBs, 𝒄(𝒕):

Many random peaks;

Only few percent of them exhibit a single pulse structure;

Diverse and composite structure which appears to be the
result of a complex distribution of several pulses;

The total duration is the first timescale used to characterize
them;

The typical pulse duration seems to be relevant as a second
timescale.

The Fourier domain of frequencies, PDS,
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𝑑𝑡𝑐(𝑡)𝑒2𝜋𝑖𝑓𝑡 and the power density

𝑃𝑓 = 𝐶𝑓𝐶𝑓
∗ (𝐶𝑘=σ𝑚=0

𝑁−1 𝑐𝑚𝑒
2𝜋𝑖𝑚𝑘/𝑁 , for N discrete data DFT,

𝑃𝑘 = |𝐶𝑘|
2):

Simplier behaviour: power-law.

Particular interest on long bursts-spectral analysis over e
large range of time. Beloborodov, A. M., Stern, B. E., & Svensson, R. 

2000, ApJ



Computing PDS

One estimator of PDS, called periodogram, is given
by:
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𝑃(𝑓𝑘) is considered as the average of 𝑃(𝑓) over a
narrow window function,
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,

the Fourier transform of the rectangular function.

The PDS and DFT for 𝑁 discrete data leads to 𝑂(𝑁2)
arithmetic operations.

There is an algorithm FFT, which helps to find the
same result more quickly, with 𝑁𝑙𝑜𝑔 𝑁 operations.
The difference in speed is enormous, especially for
long data series.

𝑁 used is an integer power of 2.

𝑊 𝑓 is not zero outside the corresponding frequency
interval ⇒ periodogram estimate is influenced from
other frequencies outside the interval, “leaks from one
frequency to another”.
A mean of the leakage correction is the data
windowing. Instead of the rectangular function, one
choses a window function that changes more gradually
from zero to its maximum and then back to zero.

In our calculations we use Bartlett window, 
but there are several different ways.



The variance

The variance 𝝈𝟐 of the periodogram estimate is independent on 𝑁 (William H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery , "Numerical recipes in FORTRAN" 1997).

We can produce estimates at a greater number of discrete frequencies, but with the same high standard
deviation, 100%: σ ∝ 𝑃𝑘.

There are techniques for reducing the variance of the estimates:

• Technique of finer data (we use in Tirana):
▪ Have a higher number of data in time series, K𝑁 instead of 𝑁 ;

▪ Partition the original K𝑁 data into 𝑁 segments each of 𝐾 consecutive sampled points;

▪ Fourier transform of each sequence, one point from each segment; to produce periodogram estimates;
▪ Average the 𝐾 periodogram estimates at each frequency;

▪ The standard deviation is reduced : 𝜎 ∝
1

𝐾
.

• Technique of Montecarlo simulation of synthetic GRB (Ukwatta T., K. S. Dhuga, D. C. Morris, G. 
MacLachlan, W. C. Parke, L. C. Maximon, A. Eskandarian, N. Gehrels, J. P. Norris, and A. Shenoy., 2011, 
MNRAS)
▪ Have a real burst 𝑐(𝑡);
▪ simulate 𝐾 light curves around the real one, based on the real one and some fluctuations around by a montecarlo random

number η generated from a Gaussian distribution, with mean value equal to zero and standard deviation equal to one:

𝑐𝑏𝑖𝑛
𝑠𝑖𝑚𝑢𝑙 = 𝑐𝑏𝑖𝑛

𝑟𝑒𝑎𝑙 + 𝜂𝑐𝑏𝑖𝑛
𝑟𝑒𝑎𝑙−𝑒𝑟𝑟𝑜𝑟

▪ Find the individual PDS of each one and average. The standard deviation is reduced: 𝜎 ∝
1

𝐾
.

• Leahy normalization (Guidorzi C., 2011, MNRAS)
▪ 𝑃 𝑓𝑘 =

1

𝑁
σ𝑚,𝑙 𝑐𝑚 𝑐𝑙𝑒

2𝜋𝑖 𝑚−𝑙 𝑘/𝑁;

▪ The variance is σ ∝ 𝑃𝑘 .



Average PDS

Averaging over a sample of long GRBS is an way to extract un underlying law from the
noisy individual PDSs.

It is assumed that time series due to different GRBs are many realizations of the same
stochastic process.

Remark: the wide variety of light curves exhibited by GRBs is potentially indicative
of different stochastic, emission and scattering processes.

▪ We sum up the PDS of individual bursts (after some normalization) and divide the
result by the number 𝑁 of bursts.

▪ The standard distribution of the individual PDS around 𝑃𝑓 follows
Δ𝑃𝑓

𝑃𝑓
∝ 𝑁−1/2.

❖The light curves are normalized to their peak (needed for increasing the weight of relatively weak
bursts in the sample)(Beloborodov et al. 2000, ApJ; Guidorzi, C., Margutti, R., Amati, L., et al. 2012,
MNRAS).

❖Or the averaging is performed inside a sole group of variability, taking into account also a kind of
pseudoredshift (obtained through empirical relations) (Lazzati, D. 2002, MNRAS).

❖Or the averaging is performed inside subclasses of GRBs found based on the autocorrelation
function (Borgonovo, L., Frontera, F., Guidorzi, C., Montanari, E., Vetere, L., & Soffitta, P. 2007) and
considering the measured redshift.



Individual PDS 

The average PDS provides no clues on the variety of properties of individual GRBs.

The key point of studying individual versus averaged PDS is that one can investigate the
possible connection between PDS and their key properties of prompt emission.

• Simulating around the same GRB (Ukwatta T. et al., 2011)
▪ Find the individual PDS of an individual light curve;
▪ Simulate 100 light curves around the real one, based on the real one and some fluctuations around

by a montecarlo random number generated from a Gaussian distribution;
▪ Find the standard deviation of 100 simulated PDS and calculate the individual PDS with this

uncertainty.

• A Leahy formula for uncertainty at each frequency (C. Guidorzi, S. Dichiara and L. Amati, 2016;
S. Dichiara, C. Guidorzi, L. Amati, F. Frontera and R. Margutti, 2016)
▪ Each GRB time profile is considered individually as the unique sample of a unique stochastic process, which is

different from other GRBs.
▪ PDSs are calculated assuming Leahy normalization.
▪ A Leahy formula for calculating the correct uncertainty of the PDS at each frequency, as a function of PDS

itself.



Modelling the PDS-Averaged PDS

As found in several independent data sets:

• The average PDS of long GRBs is described by a 
power law extending over two frequency decades, 
from about 10−2 to 1 or 2 Hz.

• The power-law index lies in the range 1.5-2.

• There is evidence for a break around 1-2 Hz for the 
harder (>∼100 keV) energy channels.

(Beloborodov et al. 2000; Ryde et al. 2003; Guidorzi et al. 2012; Dichiara, S., 

Guidorzi, C., Amati, L., & Frontera, F. 2013a, MNRAS)- figure top.

A threshold noise crossing frequency 𝑓𝑡ℎ is evident-figure 
down (Ukwatta et al. 2011)- figure bottom.



Modelling the PDS-Individual PDS

Because of the limited duration and of the statistical
properties involved, modeling the PDS of individual GRBS
is challenging.

• Several models are used.

• The simpler one is a mere power-law: 𝑆𝑃𝐿 = 𝐴𝑓−𝛼+B, B
is the white noise constant (top).

• Otherwise, the broken power law model introduces the

break frequency 𝑆𝐵𝑃𝐿 = 𝑁 1 +
𝑓

𝑓𝑏

𝛼 −1

+ 𝐵 (bottom).

For individual PDS, the power law index lies in the range
1.5-4 with some exceptions over 6.

Most of the break frequency values correspond to
timescales that are around one second.

C. Guidorzi, S. Dichiara and L. Amati, 2016



Relations PDS-Variability

The dominant frequency-variability 
measure 

Lazzati, D. 2002, MNRAS

The break frequency-variability 
measure

Lazzati, D. 2002, MNRAS

Variability measure defined by 
Fenimore&Ramirez-Ruiz 2000 

(average mean-square of the 
variations).

Number of pulses seem to correlate with the 
slope α

C. Guidorzi, S. Dichiara and L. Amati, 2016;



Relations PDS-GRB energy

Threshold frequency-isotopic peak luminosity. 
The correlation coefficient is 0.57 ± 0.03. 

Ukwatta et al. 2011

Correlation 𝐸𝑝𝑒𝑎𝑘-slope.

Dichiara et al. 2013



Relation  𝐸𝑝𝑒𝑎𝑘- slope: synthetic pulses

• Taking different peak luminosities in the source, we draw
synthetic pulses:
▪ With duration based on luminosity-duration relation

𝐿 = 3.4𝑥1052𝑡𝑝
−0.85 (Hakkila et al., 2008)

▪ With 𝑐 𝑡 following

𝑐 𝑡 = 𝐹𝑚
𝑡

𝑡𝑚

𝑟 𝑑

𝑑+𝑟
+

𝑟

𝑑+𝑟

𝑡

𝑡𝑚

𝑟+1 −
𝑟+𝑑

𝑟+1
(Kocevski et al., 2003)

𝑑, 𝑟 = 2.4, 1.5, 𝑡𝑚 = 0.323𝑡𝑝(1 + 𝑧)0.6 (Kocevski et al., 2003),

𝐹𝑚 peak photon flux found for 𝑧 = 1

▪ With peak energy 𝐸𝑝 = 380
𝐿

1.6𝑥1052

0.43
(Ghirlanda et al., 2005)

• We calculate PDS of the pulse and find the slope inside the
interval (0.3 − 1) Hz.

• We draw the relation Epeak-slope.

Conclusions

Is relation 𝐸𝑝𝑒𝑎𝑘 - slope another
confirmation of correlations between
temporal and spectral properties?


