

First Stars, Reionization & GRBs

Andrea Ferrara

Scuola Normale Superiore, Pisa, Italy

At z=1000 the Universe has cooled down to 3000 K. Hydrogen becomes neutral ("Recombination").

At z < 40 the first "PopIII" star (clusters)/small galaxies form.

At z ~ 6-15 these gradually photoionize the hydrogen in the IGM ("Reionization").

At z<6 galaxies form most of their stars and grow by merging.

At z<1 massive galaxy clusters are assembled.

SIMULATED SIGNAL

HI 21cm Line Brightness Temperature Evolution

Epoch of Reionization

- IGM warmer than CMB
- Strong $T_s T_k$ coupling

- IGM colder than CMB
- Lya coupling (WF effect)
- *X-ray preheating*

Dark Ages

- IGM colder than CMB
- Weak $T_s T_k$ coupling

HI 21cm Line Brightness Temperature Evolution

Box length=800Mpc z=029.96

GRB ABSORPTION LINES

Gallerani+07

DARK GAPS IN GRB SPECTRA

21 CM FOREST AGAINST GRBs

 v_{obs} [MHz]

Tornatore+07, Xu+15, Muratov+16, Jaacks+17 POPIII/II TRANSITION *Pallottini*+14,15 10 z=5 v[A'Mpc] Pop III 6 $\mathsf{Mpc}\;\mathsf{h}^{-1}$ Pop II 2 1000 0.001 z=32 8 10 ${
m Mpc}~{
m h}^{-1}$ v[A"Mpc] **OBSERVATIONAL IMPLICATIONS** Increasing fraction of PopIII galaxies PISN and CC supernovae

x [h' M pc]

Increasing rate of PopIII GRBs

At z>6 (z>10) 10% (40%) of all long GRBs are from PopIII stars

PopIII GRBs trace low mass galaxies (M_{\star} < 10⁷ M_{\odot}) at all z's

Ishida, de Souza & AF 2011, Robertson & Ellis 2012

HINTS FROM GRBs

Cosmic SFH deduced from PCA of GRB data

Conclusions

GRBs are key to high redshift studies

They will allow to:

- ♦ Map cosmic reionization
- ♦ Trace IGM evolution and enrichment
- ♦ Discover PopIII stars and study their IMF
- ♦ Complement 21cm intensity mapping experiments
- ♦ Pinpoint and study faint galaxies powering reionization