

THESEUS Workshop - Napoli 5th October 2017

BNS mergers and EM counterparts

binary neutron star (BNS) mergers and neutron star-black hole (NS-BH) binary mergers

among the most promising gravitational wave sources for advanced LIGO and Virgo

detection rate best expectation
BNS ~(0.4-400)/yr ~40/yr
NS-BH ~(0.2-300)/yr ~10/yr

Abadie et al. 2010

rewards of a combined GW-EM detection:

observed EM signals would incredibly enhance the chances of GW detection

- EM follow-up observations of a detected GW source is the ultimate way to unravel the nature of the system, by providing crucial and complementary information
- luminosity distance form GWs and redshift from EM signals will allow to measure H₀
- joint GW-EM signals can confirm the astrophysical origin of short gamma-ray bursts

EM counterparts to BNS mergers

EM counterparts to BNS mergers

Off-axis SGRB and jet afterglows

- forward shock emission (canonical afterglow)
 - well studied for long GRBs
 - X-rays, but also optical and radio

off-axis emission: structured jet

Salafia et al. 2015

off-axis emission: cocoon emission

X-ray afterglows of SGRBs

- Swift revealed that most SGRBs are accompanied by long-duration $(\sim 10^2-10^5~{\rm s})$ and high-luminosity $(10^{46} - 10^{51} \text{ erg/s})$ X-ray afterglows
- total energy can be higher than the SGRB itself
- hardly produced by BH-torus system they suggest ongoing energy injection from a long-lived NS

MAGNETAR MODEL

Zhang & Meszaros 2001 Metzger et al. 2008

X-ray emission \longrightarrow spindown of a uniformly rotating NS with a strong surface magnetic field

$$\gtrsim 10^{14} - 10^{15} \,\mathrm{G}$$

$$\begin{array}{ll} \text{dipole} \\ \text{spindown} \end{array} \ L_{\mathrm{sd}}(t) \sim B^2 R^6 \Omega_0^4 \bigg(1 + \frac{t}{t_{\mathrm{sd}}}\bigg)^{-2} \end{array}$$

Gompertz et al. 2013 Rowlinson et al. 2013

Product of BNS mergers

- ullet observation of $\sim 2~M_{\odot}$ NSs Demorest et al. 2010, Antoniadis et al. 2013
- ullet rotation allows to support higher masses $M_{
 m supra}\sim 1.2~M_{
 m TOV}\gtrsim 2.4~{
 m M}_{\odot}$ Lasota et al. 1996
- progenitor masses peak around $1.3-1.4~{\rm M}_{\odot}$ \rightarrow BMP mass likely $< 2.5~{\rm M}_{\odot}$ Lattimer 2012 Belczynski et al. 2008

LONG-LIVED NS IS A VERY LIKELY OUTCOME OF A BNS MERGER!

EM emission from the long-lived NS remnant

- spindown-powered transients studied only recently
 _{e.g. Yu et al. 2013}
 - Metzger & Piro 2014 Siegel & Ciolfi 2016a,b
- differentially rotating NS remnant matter ejection as baryon-loaded wind (neutrino- and/or magnetically-induced)
- uniformly rotating NS
 dipole spindown radiation inflates a
 photon-pair plasma nebula inside
 ejecta cavity
- radiation reprocessed by the ejecta, finally escaping
- along the evolution, NS can collapse to BH (if supramassive)

EM emission from the long-lived NS remnant

Siegel & Ciolfi 2016a,b

Conclusions

X-ray emission from BNS mergers include

signals closely related to SGRB jet evolution (side emission,

cocoon, forward shock afterglows..)

 spindown-powered transients from long-lived merger remnant (massive NS)

next step:

from semi-analytical ID models to 2D hydro simulations

figure by S. Vinciguerra

in collaboration with S. Ascenzi

← PRELIMINARY!

BACKUP SLIDES

X-ray flashes powered by NS spindown

Ciolfi 2016

are all XRFs really a subclass of long GRBs?

 spindown-powered X-ray emission from long-lived NSs matches the high-energy emission of soft XRFs (those emitting no gamma-rays)

EM emission from the long-lived NS remnant

Siegel & Ciolfi 2016a, 2016b

$egin{aligned} &rac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{w}}(R_{\mathrm{ej}}(t),t) \ &rac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = L_{\mathrm{EM}}(t) + rac{\mathrm{d}E_{\mathrm{th,NS}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t) \end{aligned}$

isotropy → ID model

 $\frac{dR_{ej}}{dt} = v_w(R_{ej}(t), t)$ $\frac{dR_{sh}}{dt} = v_{sh}(t)$ for the evolution

$$rac{\mathrm{d}t}{\mathrm{d}t} = rac{\mathrm{d}t}{\mathrm{d}E_{\mathrm{sh}}} + rac{\mathrm{d}t}{\mathrm{d}t} + rac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} - L_{\mathrm{rad,in}}(t)$$

$$egin{aligned} rac{\mathrm{d}t}{\mathrm{d}t} & \mathrm{d}t & \mathrm{d}t \\ rac{\mathrm{d}E_{\mathrm{th,ush}}}{\mathrm{d}t} &= -rac{\mathrm{d}E_{\mathrm{th,vol}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t) \\ rac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} &= rac{\mathrm{d}E_{\mathrm{th,sh}}}{\mathrm{d}t} + rac{\mathrm{d}E_{\mathrm{th,ush}}}{\mathrm{d}t} \\ rac{\mathrm{d}E_{\mathrm{nth}}}{\mathrm{d}t} &= -rac{E_{\mathrm{nth}}}{R_{\mathrm{n}}}rac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} - rac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} \\ &+ L_{\mathrm{rad,in}}(t) + \eta_{\mathrm{TS}}[L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)] \end{aligned}$$

$$\frac{\mathrm{d}E_B}{\mathrm{d}t}\!=\!\eta_{B_\mathrm{a}}[L_\mathrm{sd}(t)+L_\mathrm{rad,pul}(t)]$$

balance equation for photons and particles

$$0 = Q(\gamma) + P(\gamma) + \dot{N}_{C,syn}(\gamma)$$

$$\begin{split} \frac{\mathrm{d}v_{\mathrm{ej}}}{\mathrm{d}t} &= a_{\mathrm{ej}}(t) \\ \frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} &= v_{\mathrm{ej}}(t) + \frac{1}{2}a_{\mathrm{ej}}(t)\mathrm{d}t \\ \frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} &= \frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} \\ \frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} &= [1 - f_{\mathrm{ej}}(t)] \frac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t) - L_{\mathrm{rad,in}}(t) \\ \frac{\mathrm{d}E_{B}}{\mathrm{d}t} &= \eta_{B_{\mathrm{n}}}[L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)] \end{split}$$

$$0 = \dot{n}_0 + \dot{n}_A + \dot{n}_C^{NT} + \dot{n}_C^T + \dot{n}_{syn}$$
$$-\frac{c}{R_n} n(\Delta \tau_C^{NT} + \Delta \tau_{\gamma\gamma}) - \dot{n}_{esc}$$

PROBLEM OF THE MAGNETAR MODEL:

strong baryon pollution can choke the formation of a relativistic jet

→ HARD TO EXPLAIN THE SGRB PROMPT EMISSION

e.g., Dessart et al. 2009, Hotokezaka et al. 2013, Siegel et al. 2014 Nagakura et al. 2014, Murguia-Berthier et al. 2016

"Time-reversal" scenario for SGRBs

Ciolfi & Siegel 2015a, ApJ Letters 798, L36

- (I) The differentially rotating, supramassive NS (SMNS) ejects a baryon-loaded and highly isotropic wind
- (II) The cooled-down and uniformly rotating NS emits spin-down radiation inflating a photon-pair nebula that drives a shock through the ejecta
- (III) The NS collapses to a black hole (BH), a relativistic jet drills through the nebula and the ejecta shell and produces the prompt SGRB, while spin-down emission diffuses outwards on a much longer timescale, producing the X-ray afterglow

Electromagnetic emission in the TR scenario

Comparison with SGRB afterglows

broad characteristics in good agreement

- signals cover the right band (soft X-rays)
- very nice match with range of durations and luminosities

but with a closer look..

- no observations of early rising
- second plateau explained only for collapsing models
- flares explained as transition to optically thin ejecta?

TR scenario - implications

afterglows as seen by the observer assuming **SGRB** (trigger) **at merger**

TR scenario - implications

afterglows as seen by the observer assuming **SGRB** (trigger) **at collapse**

improved match assuming the time-reversal scenario!

GW detector network

