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BNS mergers and EM counterparts

binary neutron star (BNS) mergers and
neutron star-black hole (NS-BH) binary mergers

N

among the most promising gravitational
wave sources for advanced LIGO andVirgo

4 A
detection rate best expectation
BNS ~(0.4-400)/yr ~40/yr
NS-BH ~(0.2-300)/yr ~10/yr
rewards of a combined \ J
GW-EM detection: Abadie et al. 2010

® observed EM signals would incredibly enhance the chances of GW detection

® EM follow-up observations of a detected GWV source is the ultimate way to unravel
the nature of the system, by providing crucial and complementary information

® |uminosity distance form GWs and redshift from EM signals will allow to measure Ho

® joint GW-EM signals can confirm the astrophysical origin of short gamma-ray bursts



EM counterparts to BNS mergers

Sl <

Q Ns &

& O s SRS

& XS N e

SGRB (prompt) X X Ve
SGRB (off-axis) ' Ve N Ve
SGRB (jet afterglows) Ve N Ve
KILONOVA VNG N v N
RADIO TRANSIENTS X N ~ N
NS SPINDOWN v Ve Ve



EM counterparts to BNS mergers
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Off-axis SGRB and jet afterglows

® forward shock emission
(canonical afterglow)

- well studied for long GRBs
- X-rays, but also optical and radio

® off-axis emission: ® off-axis emission: cocoon emission

structured jet
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X-ray afterglows of SGRBs

Swift revealed that most SGRBs are accompanied by
long-duration (~ 104 — 10° s) and high-luminosity
(10*® — 10°" erg/s) X-ray afterglows

total energy can be higher than the SGRB itself

hardly produced by BH-torus system - they suggest
ongoing energy injection from a long-lived NS

MAGNETAR MODEL Zhang & Meszaros 2001
Metzger et al. 2008

X-ray emission —» spindown of a uniformly
rotating NS with a strong surface magnetic field
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Product of BNS mergers
SMNS / HMNS .. ..or STABLE NS

§ /
BH + TORUS

\ BH + TORUS
prompt
collapse

BNS

sim. & vis.:Wolfgang Kastaun

® observation of ~ 2 My NSs Demorest et al. 2010, Antoniadis et al. 2013

e rotation allows to support higher masses Mgupra ~ 1.2 Mrov 2 2.4 Mg
Lasota et al. 1996

® progenitor masses peak around 1.3 — 1.4 Mg > BMP mass likely < 2.5 Mg
Lattimer 2012 Belczynski et al. 2008

[ LONG-LIVED NS IS AVERY LIKELY OUTCOME OF A BNS MERGER! j




EM emission from the long-lived NS remnant

BNS merger

* spindown-powered transients studied

s only recently .. vyetal.2013

Metzger & Piro 2014
Siegel & Ciolfi 2016a,b

differentially rotating
NS remnant (Phase I}

* differentially rotating NS remnant
matter ejection as baryon-loaded wind
(neutrino- and/or magnetically-induced)

shock and PWN
(Phase [l1-111)

* uniformly rotating NS
dipole spindown radiation inflates a
photon-pair plasma nebula inside
ejecta cavity

* radiation reprocessed by the ejecta,
finally escaping

shocked
ejecta

* along the evolution, NS can collapse to BH
(if supramassive)
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EM emission from the long-lived NS remnant
Siegel & Ciolfi 2016a,b
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70, =03 ® signal peaks at 102-10% s (similar range for
tae = D115 duration), with ~10-100 s delayed onset

B3 1046 ® |uminosities |1046-104 erg/s

® mostly in the soft X-rays




Conclusions

X-ray emission from BNS mergers include

merger .
ejecta

shock

relativistic ~
wind from
NS remnant
reverse

signals closely related to SGRB jet evolution (side emission,

cocoon, forward shock afterglows..)
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next step: A A
from semi-analytical 1D models ” 2
to 2D hydro simulations T Nt s mergerl
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in collaboration
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BACKUP SLIDES



X-ray flashes powered by NS spindown

Ciolfi 2016
are all XRFs really a subclass of long GRBs?
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EM emission from the long-lived NS remnant
Siegel & Ciolfi 2016a,2016b

BNS merger
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PROBLEM OF THE MAGNETAR MODEL:

strong baryon pollution can choke the
formation of a relativistic jet

—> HARD TO EXPLAIN THE SGRB PROMPT EMISSION

- )

e.g., Dessart et al. 2009, Hotokezaka et al. 2013, Siegel et al. 2014
Nagakura et al. 2014, Murguia-Berthier et al. 2016
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long-lived NS
baryon-loaded funnel
VS

BH-disk

baryon-free funnel
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Ciolfi et al. 2017



“Time-reversal’ scenario for SGRBs
Ciolfi & Siegel 2015a,Ap| Letters 798,L36

nebula

aNS

(I) The differentially rotating, supramassive NS (SMNS) ejects a baryon-loaded
and highly isotropic wind

(I) The cooled-down and uniformly rotating NS emits spin-down radiation
inflating a photon-pair nebula that drives a shock through the ejecta

(Il1) The NS collapses to a black hole (BH), a relativistic jet drills through the
nebula and the ejecta shell and produces the prompt SGRB, while spin-down
emission diffuses outwards on a much longer timescale, producing the X-ray
afterglow



Electromagnetic emission in the TR scenario
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Comparison with SGRB afterglows

broad characteristics
in good agreement

signals cover the right band
(soft X-rays)

very nice match with range
of durations and luminosities

but with a closer look..
no observations of early rising

second plateau explained only for
collapsing models

flares explained as transition to
optically thin ejecta?
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TR scenario - implications
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TR scenario - implications
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GWV detector network
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