THE X-GAMMA IMAGING SPECTROMETER (XGIS) ONBOARD THESEUS

Riccardo Campana & Fabio Fuschino

on behalf of the XGIS team
INAF/IASF-Bologna
Napoli 05/10/2017

The XGIS instrument

A sensitive broadband X and γ-ray instrument is needed to

- Reliably identify GRBs and other transients
- Measure GRBs and other transients on short (µs to ms) time scales, providing high energy light curves
- Provide their spectroscopic characterisation
- Extend the soft X-ray band of SXI up to MeV energies
- Provide a simultaneous and independent trigger with ~arcmin localisation capabilities

The XGIS instrument

XGIS baseline

- 3 instruments (units) pointing in different directions
- Each unit has 4 detection modules based on solidstate detectors and scintillators: SDD+CsI(TI)
- Twice the FoV of SXI
- Energy band 2 keV 20 MeV
- Imaging capabilities at low energies (2–30 keV) using a coded mask
- Restricted FoV at intermediate energies (30–150 keV) using a FoV delimiter
- ~Isotropic detection capabilities at high energies (150 keV – 20 MeV)

XGIS location onboard THESEUS

The XGIS instrument: one unit

Coded mask

Provides imaging capabilites below ~30 keV

Collimator
Shields the FoV
below ~150 keV

Detection plane 2×2 modules, SDD+Csl

One XGIS unit at a glance - 1

Energy band	2 keV – 20 MeV	
# of detection plane modules	4	
# of pixels per module	32×32	
Pixel size = Mask element size	5 mm × 5 mm	
Low Energy detector (2-30 keV)	Silicon Drift Detector (SDD)	
High Energy detector (>30 keV)	CsI(TI) scintillator, readout by SDD	
Discrimination of LE/HE events	Pulse shape analysis	
Size [cm]	50 × 50 × 85	
Power [W]	30	
Weight [kg]	37.3	
Typical telemetry load	2 Gbit/orbit	

One XGIS unit at a glance - 2

	2-30 keV	30-150 keV	>150 keV
Fully coded FoV	9×9 deg ²		
Half sens. FoV	50×50 deg ²	50×50 deg ² (FWHM)	
Total FoV	64×64 deg ²	85×85 deg ² (FWZR)	~2π sr
Angular resolution	25 arcmin		
Source loc. accuracy	5 arcmin @>6σ		
Energy resolution	200 eV FWHM @6 keV	18% FWHM @60 keV	6% FWHM @500 keV
Timing resolution	1 μs	1 μs	1 µs
On-axis area	512 cm ²	1024 cm ²	1024 cm ²

Performance

XGIS sensitivity in 1 second (5σ level)

Performance

Sensitivity of the XGIS to GRBs in terms of **minimum detectable photon peak flux in 1s** (5σ) in the **1-1000 keV** energy band as a function of the spectral peak energy

The combination of **large effective area** and unprecedented **large energy band** provides a **much higher sensitivity** w/r to previous (e.g., CGRO/BATSE), present (e.g., Swift/BAT) and next future (e.g., SVOM/ECLAIRS) in the soft energy range, while keeping a very good sensitivity up to the MeV range.

Trigger logic

- XGIS will qualify SXI triggers
 - Find XGIS unit corresponding to SXI trigger location and look for an excess in count rates
- Autonomous trigger capability
 - Ratemeters on different time scales
 (e.g. 10 ms, 100 ms, 1 s, 10 s) and energies
 - Image deconvolution in 2-30 keV

 (accumulates an image in a certain time scale, comparing with previous ones looking for significant excesses)

The coded mask and FoV delimiter

The **coded mask** of each XGIS unit is:

- placed 70 cm above the detector modules
- made of stainless steel of 0.5 mm thickness
- has an overall size of 50×50 cm²
- self supporting pattern (to guarantee the maximum transparency of the open elements)

The **mechanical structure** connecting the mask with the detector is

- made of stainless steel 0.1 mm thick supporting 4 tungsten slats 45 cm high with a variable thickness (0.5-0.3 mm).
- will act as a lateral passive shield for the imager system (2-30 keV) and as a FOV delimiter at energies >150 keV.
- By combining the three units, with an offset of ±35° for two of them, the FOV delimiter guarantees an average XGIS effective area of ~1400 cm² in the SXI FOV (104×31 deg²).

The detection module

32×32 array of single pixels
Surrounded by the FEE
Dimensions 19.5×19.5×5 cm³

The "siswich" detection principle

- Low-energy threshold (~2 keV)
- Extended energy range (up to ~20 MeV, depending on crystal thickness)
- Excellent energy resolution at low energies
- Using two SDDs for readout, positionsensitive in γ-rays

FAST signal

SLOW signal

PULSE SHAPE ANALYSIS

The "siswich" detection principle

Excellent overlap of sensitivity between the two operating modes thanks to the SDDs low noise

SDD & FEE

Operating principle of a Silicon Drift Detector

SDD & FEE

R&D activity in the framework of the **ReDSoX** collaboration led by **INFN** and **FBK** involving several institutions (INAF/IASF-Bo & IAPS, PoliMi, UniUD, UniPV, ELETTRA) http://redsox.iasfbo.inaf.it

ReDSoX **2×2 SDD matrix** with four 25 mm² cells (left: anode side; right: entrance window)

SDD & FEE

The R&D activity in the framework of the **ReDSoX** collaboration involves also the front-end electronics

VEGA: A low-noise and low-power Application Specific Integrated Circuit (ASIC) designed to read out large area monolithic linear SDDs.

Campana et al. 2014 Ahanganariabhari et al. 2014 Rachevski et al. 2015

SIRIO: A ultra low-noise charge-sensitive preamplifier for SDDs.

Bertuccio et al. 2016

R&D activity at INAF/IASF-Bologna Various prototypes and architecture demonstrators have been developed and tested

First prototype with one CsI bar coupled with two 25 mm² SDDs Discrete elements charge-sensitive preamplifier

R&D activity at INAF/IASF-Bologna Various **prototypes** and **architecture demonstrators** have been developed and tested

JFET front-end discrete electronics board

Full scale prototype
One 4×4 pixel module

R&D activity at INAF/IASF-Bologna Various **prototypes** and **architecture demonstrators** have been developed and tested

Test equipment

Simultaneous ²⁴¹Am + ¹³⁷Cs spectrum, demonstrating PSA capabilities in separating X and γ-ray events

X-ray low energy threshold below 1 keV (ENC ~20 e- rms with discrete-elements front-end electronics)

Low noise SDDs allow a ~20 keV threshold also for scintillation events besides an excellent resolution at high energies

Spatial resolution of ~2.2 mm in gamma-rays

Using a 5 cm long CsI(TI) bar and comparing the readout of the SDDs at the two bar ends

Trade-offs and improvements

- FoV of a single unit
- Optimization of the mask open fraction (impacts on efficiency and sensitivity)
- FEE optimization (number of shapers/ADCs per channel)
- Efficiency at high energies (scintillator type and thickness)
- Triggering logic(s)