Spectral, timing and polarization study of GRB prompt emission: a multi-instrument perspective

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- Single pulse: Crider+97; Ghirlanda+03; Ryde 04,
 Ryde & Pe'er 09: Thermal emission.

Challenges of the prompt emission study

- Standard scenario. Synchrotron (Rees & Meszaros 92, 94. Fitted with Band (+93) function.
 - 1. Shortcomings of synchrotron model (Preece+98).
 - 2. Wide field of view detectors.
 - 3. Rapid evolution and Overlapping pulses.
- **Single pulse:** Crider+97; Ghirlanda+03; Ryde 04, Ryde & Pe'er 09: Thermal emission.
- **Fermi era:** wider band. Variety of models Ryde+10; Guiriec+11,13; Axelsson+12; Basak & Rao 13, 14; Burgess+14; Iyaani+15 (spectrum with

two humps)

Statistically difficult,

Multi-instrument strategy

Time since trigger

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

Example GRB I

1. GRB 090618 (Basak & Rao 2015a, ApJ)

Example GRB II

2. GRB 130925A (Basak & Rao 2015b), Ultra-long GRB

Debate: (1) GRB or a **TDE**? HST image shows 600 pc offset from the host. But, morphology of the host indicates recent major merger. Combine the knowledge from host study and

emission process.

(2) Emission: **Single BB:** Piro+14 ~0.5 keV (cocoon), Bellm+14 ~5 keV,

Dust scattering: Evans+14

130925A (ultra-long) vs 090618 (long)

GRB 151006A: First Astrosat GRB

Surprising Spectral evolution in Single Pulse GRB 151006A.

The first GRB detected by Astrosat (Bhalerao+16, Rao+16). Unusual spectral evolution seen (Basak+17, MNRAS).

Basak+17, MNRAS

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

I. Spectral curvature at late time

Two possibilities: (1) Afterglow Phase, (2) A second pulse hidden in the data

II. Bayesian block and Hardness evolution

III. Evolution of Polarization

Origin of 2BBPL: spine-sheath jet?

Process:

Interaction with envelop (Ramirez-ruiz+02; Zhang+04)

Radiation:

(1) Thermal emission – photosphere(2) Non-thermal – two processes

Basak & Rao 2015a, ApJ

Other groups:

Ito + 13: Simulation in a stratified jet. Found the double hump and non-thermal component.

Iyyani + 15: Comptonization of thermal photons that mimics the shape.

Summary and Conclusion

- Prompt Emission spectral shape still debated. Degeneracies.
- Multi-wavelength and Multi-instrument required.
 Long term spectral evolution. Better sensitivity and resolution.
- Spectrum has double hump.
 Phenomenological model: Two blackbodies and a power law (with cutoff)
- A spine-sheath jet fits in the observations.

Outlook

- Theseus for GRB prompt spectroscopy:
 - XGIS: 2 keV 20 MeV. Wide band, high sensitivity and resolution for time resolved spectroscopy
 - SXI: early spectral data in low energies with good resolution and sensitivity.
- How can CZTI contribute?
 - Current sample >50 detections.
 11 with significant polarization (Chattopadhyay + 17)
 - Individual cases and Statistical sample: polarization degree and angle.

Theseus consortium paper (Amati+17)

Toma+09: Predicted polarization (50-500 keV) w.r.t E

