Observational Properties of Protoplanetary Disks

Leonardo Testi - ESO/Arcetri Itesti@eso.org; It@arcetri.astro.it

- Today:
 - Molecular specroscopy basics
 - Molecular abundances
 - Molecular line observations of disks: kinematics, turbulence, mass

Questions from yesterday

• More on dust traps

• Just heard from Phil, more this afternoon

• More on Lab Experiments

- See Testi et al. 2014 PPVI review
- Specific on laboratory experiments: Blum & Wurm 2008, ARAA

Part VIII Molecular Spectroscopy

molecular spectroscopy

Molecular lines:

Rotational spectra of molecules (simplified)

$$E^{rot} = \frac{\hbar^2}{2\mu R_e^2} J(J+1) = B_e J(J+1) \qquad B_e = \frac{\hbar^2}{2\mu R_e^2}$$

 $\Delta E^{rot}(J) = 2B_e(J+1) \qquad J=0,1,2... \qquad m=m_1*m_2/(m_1+m_2)$

Selection rules:

 \succ Permanent dipole moment (H₂, C₂, O₂, CH₄, C₂H₂ not ok)

- DJ=1 (only adjacent levels)
- Symmetric molecules => quadrupole transitions (DJ=2)

- Examples of diatomic molecules: CO (m=7) and H₂ (m=0.5)
- ◆ CO levels are closely spaced
 ➢ Smaller DE => long wavelength transitions, low excitation
 - ≻ J=1-0 -> n=115GHz, l=2.7mm

≻ J=3-2 -> n=345GHz, I=0.87mm

◆ H2 levels are further away, only quadrupole transitions allowed
 ➢ MIR, high excitation lines

- Molecular lines: symmetric top rotators
 - Molecules with an axis of three-fold or higher symmetry
 - Examples: NH₃,CH₃CN,CH₃CCH
 - Quantum numbers: J and projection on axis K (K<=J)</p>
 - Selection rules: DJ=1 (only adjacent^{KI} levels), DK=0
 - K=J levels are metastable
 - Example: ammonia inversion transitions

- Molecular lines: asymmetric rotators
 - Quantum numbers: J and projections on two axes K₋ and K₊
 - Complicated spectra
 - ≻ Example: H₂O

Molecular abundances

Molecular abundances in molecular clouds and YSOs

Part IX Molecular gas in disks

Molecular gas

◆ Gas has to dominate the disk mass
 ➢ From geometry : H/R ~ 0.1 at 1 AU

 $\frac{1}{\rho} \frac{\partial p}{\partial z} \sim \frac{p}{\rho z} = -\frac{GM_{\star}z}{R^3}$ $\rho(z) = \rho(0) \ exp(-z^2/2H^2)$ $H/R = (T_d/T_g)^{1/2} \ (R/R_{\star})^{1/2}$

- Direct measurements:
 - ➢Cold gas CO, … (outer disk)
 - > Warm gas H₂, CO, H₂O (inner disk)
 - Indirect: Accretion and Jets

Gas in protoplanetary disks

(van Dishoeck 2014)

Outer disks structure and kinematics

HD163296

(de Gregorio Monsalvo+2013;Mathews+2013)

Molecular gas

 Calculation of the CO emission assuming thermalised gas

$$I_{\nu} = \int_0^{\infty} S_{\nu}(s) e^{-\tau_{\nu}}(s) K_{\nu}(s) ds$$

$$\begin{aligned} \tau_{\nu}(s) &= \int_{0}^{s} K_{\nu}(s') ds' & K_{\nu}^{d}(s) = \rho(s) \cdot k_{\nu} & K_{\nu}^{CO}(s) = n_{l}(s) \cdot \sigma_{\nu}(s) \\ n_{l}(s) &= \chi_{CO} \frac{\rho(s)}{m_{0}} \cdot \frac{g_{l} e^{-E_{l}/kT_{CO}(s)}}{Z(T_{CO}(s))} \\ S_{\nu}(s) &= B_{\nu}(T_{CO}(s)) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(h\nu/kT_{CO}(s)) - 1} \\ T_{CO}(r) &= T_{CO}(r_{0})(r/r_{0})^{-q} \end{aligned}$$
(Isella et al. 2007)

Molecular gas

Simulated CO profiles and maps

(Isella et al. 2007)

Outer disks structure and kinematics

HD163296

(Qi et al. 2012)

Gas properties and evolution

Kinematics

- Disk-outflow interaction
- Possible evidence for non keplerian motions
- Physical properties
 - Temperature, density structure
 - ➢Abundance, gas to dust ratio
- Chemical properties
 - Formation of complex molecules
 - Chemical differentiation in different regions of the disk

CO isotopes depiction factors: ${}^{13}CO \Rightarrow \sim 10$ ([${}^{13}CO$]/[H₂]~10⁻⁷) C ${}^{18}O \Rightarrow > 60$

HD163296 as seen by ALMA

Extent of the CO disk is much larger than that of the mm-grains disk

Consistent with expectations from viscous spreading and migration of the larger grains

HDI63296 as seen by ALMA

Evidence for a CO disk wind

Klaassen et al. 2013)

HD163296 as seen by ALMA

Direct measurement of disk flaring and CO depletion on the mid plane

5 min pause

• Why CO is our prime probe of gas?

 With [CO]/[H₂]~10⁻⁴, why should it be a better trace of mass than dust ([d]/[H₂]~0.01)?

• What are the difficulties in using gas as tracer?

Gas kinematics

Potentially a direct measurement of the disk selfgravity

Not exactly Keplerian

• Largest effect is the pressure term 5%, self gravity 0.1-0.5%

Turbulence

Turbulence provide an additional line broadening term

Measureable with ALMA: high S/N and resolution

Turbulence - pre-ALMA

- High S/N spectra limit turbulence to
 - < 40 m/s for TW Hya</p>
 - ~300 m/s for upper layers of HDI63296 disk (0.4 Mach)

Hughes et al. (2011)

- DM Tau: 0.4-0.5 Mach at intermediate layers (Guilloteau et al. 2012)
- Important for planet-formation models; mixing of material

HD163296 as seen by ALMA

Chemical measure of CO snowline

Masses from CO and isotopomers

CO isotopomers may be good tracers of the gas mass, if treated very carefully

• Taking into account: freeze-out and (selective) photodissociation

Direct measurement from HD

 HD has been detected with Herschel in the nearest disk. This may be a good constraint on the gas mass in disks

Take home points

- Molecular spectroscopy is potentially a very powerful tool to study disk kinematics, physics and chemistry
 - Complex modelling
 - Missing/uncertain key data: collision rates, reaction rates
- ALMA will be the prime tool to study
 - kinematics and chemistry of disks