Observational Properties of Protoplanetary Disks

Leonardo Testi - ESO/Arcetri ltesti@eso.org; lt@arcetri.astro.it

- Today:
 - Continuum emission from disks
 - Dust disk masses from mm observations
 - Interferometry

Questions from yesterday

- Different classes of YSOs confusing
 - will revisit this in the next couple of slides

YSOs Classification

λ (μm)

of IR astronomy, but were finally identified in the (sub)mm

Shu+87, Lada 87, Wilking+89, Andre'+93

Time

Timescales for inner disk

- Mesuring the fraction of objects that show disk-like infrared excess
- Uncertainties:
 - ages (computed from pms-tracks
 - tracing only hot dust very close to the star
 - whole population is difficult to probe

Comparison with Solar System

Calcium-Aluminum Inclusions (CAI)

Oldest, high-T (>~1700K) processing, short formation phase (<~3x10⁵ yr)

Chondrules

Formed for longer time than CAI, high-T (~2000K) few Myr age dispersion

Matrix

sub-um particles, glue all together

Part VI Continuum emission from classical disks

SED of a locally isothermal disk

$$F_{\nu} = \frac{\cos\theta}{D^2} \int_{r_i}^{r_o} B_{\nu}(T_d) (1 - e^{-\tau_{\nu}}) 2\pi r dr$$

$$T_d \sim r^{-q}$$

$$\tau_{v} \propto \Sigma(r) \kappa_{v} \qquad \Sigma(r) \propto r^{-p}$$

$$\Sigma(\mathbf{r}) \propto \mathbf{r}^{-\mathbf{p}}$$

$$\kappa_{\nu} \propto \kappa_{o} \nu^{\beta}$$

If
$$\tau_{\nu} \ll 1$$
:

If
$$\tau_{\nu} \gg 1$$
:

$$F_{\nu} \propto \kappa_{\nu} \times B_{\nu}(T_d) \times M_d$$

$$F_{
u} \propto B_{
u}(T_d) \times Area$$

What if we carve a hole?

Transition disks

- ~10-20% of disk population, likely represent a variety of evolutionary patterns
- We shall go back to these tomorrow

SED of a locally isothermal disk

$$F_{\nu} = \frac{\cos\theta}{D^2} \int_{r_e}^{r_o} B_{\nu}(T_d) (1 - e^{-\tau_{\nu}}) 2\pi r dr$$

 $T_d \sim r^{-q}$

$$\tau_{v} \propto \Sigma(r) \kappa_{v} \qquad \Sigma(r) \propto r^{-p} \qquad \kappa_{v} \propto \kappa_{o} v^{\beta}$$

Beckwith+ 1991

SED of a locally isothermal disk

Viscous heating provides a poor fit of protoplanetary disc temperature: the outer disk would be too cool

"flared" disk

Irradiation flux:

The flaring angle:

$$F_{\rm irr} = \alpha \frac{L_*}{4\pi r^2}$$

$$\alpha = r \frac{\partial}{\partial r} \left(\frac{h_s}{r} \right) \longrightarrow \xi \frac{h_s}{r}$$

$$T^4 = \frac{\xi}{\sigma} \frac{h_s L_*}{4\pi r^3}$$

$$h_s = \chi h$$

An increasing $h_s(r)$ allows to intercept more radiation warming the outer disk

$$F_{\nu} = \frac{\cos\theta}{D^2} \int_{r_i}^{r_o} B_{\nu}(T_d) (1 - e^{-\tau_{\nu}}) 2\pi r dr$$

$$T_d \sim r^{-q}$$

$$\tau_{\nu} \propto \Sigma(r) \kappa_{\nu} \qquad \Sigma(r) \propto r^{-p} \qquad \kappa_{\nu} \propto \kappa_{o} \nu^{\beta}$$

Flared disks: detailed models

[K. Dullemond]

Including viscous heating

- Stellar radiation heats the disc atmosphere
- viscosity heats the midplane, but only close to the central star

$$(M_{acc}\sim 10^{-8} M_{sun}/yr @ 1 Myr)$$

Disk masses

• $F_{lmm} \sim B_v(T) k_{lmm} M_d$

Disk masses - Taurus

- Full Taurus survey, pre-ALMA: low detection rate M*<0.3Msun
- $F_{lmm} \sim B_{\nu}(T) \overline{k_{lmm} M_d}$

5 min pause

 mm traces the outer disk mass, NIR the inner disk, should they be related at all?

 Which disk parameter is relevant to follow disk evolution and planet formation?

Disk masses - Evolution

- mm tracks the amount of dust for the objects with NIR excess
- Comparison of mm luminosity functions taking into account observational biases

Disk masses - Evolution

Comparison of mm luminosity functions taking into account observational biases

Disk masses - Evolution

- Mass differences are not yet statistically significant (low number statistics)
- Comparison of mm luminosity functions taking into account observational biases

Disk masses - Brown Dwarfs

Resolving disk structure

- 10AU@140pc=0.14 arcsec
- Diffraction: 0.14arcsec@1mm => 1.5km
- Need to use interferometry

0.87mm

Small digression on interferometry

- Interference pattern of the signal from two antennas separated by a baseline b
- After correction for the optical path delay each pair of antennas measure the fringe visibility corresponding to the baseline b (as seen from the source

$$V(u, v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(x, y) I(x, y) \exp(-2i\pi (ux + vy)) dx dy$$

$$(x,y)$$
=Sky (u,v) =baselines plane $P(x,y)$ =Antenna power pattern

V(u,v)=Measured visibility I(x,y)=Brightness distribution on Sky

Analysis of interferometric data

$$\Sigma(R,t) = \Sigma_t \left(\frac{R_t}{R}\right)^{\gamma} \times \exp\left\{-\frac{1}{2(2-\gamma)} \left[\left(\frac{R}{R_t}\right)^{(2-\gamma)} - 1\right]\right\}$$

- Models solve for the self consistent structure, given Sigma (and star)
- See also Isella+2007;2009

Take home points

- Inner disk timescale consistent with SS dating
- Little evidence for mass evolution disks
 - Disk dissipation seems to be a fast process
- Resolving the disk structure requires high angular resolution (mm interferometry), and a lot of sensitivity...