Growth of terrestrial planets

Wilhelm Kley
Institut für Astronomie \& Astrophysik \& Kepler Center for Astro and Particle Physics Tübingen

EBERHARD KARLS
 UNIVERSITAT TUBINGEN

March 2015

2. Growth to terrestrial planets: Organisation

Lecture overview:
 ■ 2.1 Concepts
 - 2.2 Protoplanets
 ■ 2.3 Terrestrial Planets
 - 2.4 Water
 - 2.5 Moon formation

(Credit: Don Davis)

2.1 Concepts: Overview of Formation Process

Growth from 'dust' to planets

Dust \Rightarrow Planetesimals ($\mu \mathrm{m} \Rightarrow 1-10 \mathrm{~km}$, direct collisions) Concentration of particles (eddies, vortices, pressure bumps), timescale $\approx 10^{5}$ yrs.

2.1 Concepts: The problem

Planetesimals:

- Objects from 1-10km up to nearly moon-sized (planetary embryos)
- Starting point for later phase of planet formation
- Now gravitational interaction becomes important

In this mass range: very small aerodynamic drag forces
Possible: Inhomogeneities of the disk density
\rightarrow tidal interaction
With initial 1 km -sized particles need 10^{11} particles to make the terrestrial panets.
Numerically very demanding:

- a lot of particles
- very long evolution timescale (many dynamical times)
\Longrightarrow Combination of statistical and numerical methods

2.1 Concepts: Gravitational focussing I

Two bodies can only grow via physical collisions Mutual gravitational interaction increases the effective crosssection

(R.Mardling)

At large distances the 2 bodies have the Impact Parameter R_{0} and velocity $v_{\text {rel }}=v_{\infty}$, the shortest distance is R_{p} with velocity v_{p}. Angular momentum conservation

$$
\begin{equation*}
R_{0} v_{\text {rel }}=R_{p} v_{p} \tag{1}
\end{equation*}
$$

energy conservation

$$
\begin{equation*}
\frac{1}{2} \mu v_{\text {rel }}^{2}=\frac{1}{2} \mu v_{p}^{2}-\frac{G\left(m_{1} m_{2}\right)}{R_{p}} \tag{2}
\end{equation*}
$$

with the reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$.

2.1 Concepts: Gravitational focussing II

(R.Mardling)

For the effective cross section σ one finds

$$
\begin{equation*}
\sigma \equiv \pi R_{0}^{2}=\pi R_{p}^{2} F_{\mathrm{grav}}=\pi R_{p}^{2}\left[1+\left(\frac{v_{\mathrm{esc}}}{v_{\mathrm{rel}}}\right)^{2}\right] \tag{3}
\end{equation*}
$$

with the gravitative enhancement factor $F_{\text {grav }}$ and the escape velocity

$$
\begin{equation*}
v_{\mathrm{esc}}=\left(\frac{2 G\left(m_{1}+m_{2}\right)}{R_{p}}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

In a cold disk of planetesimals with $v_{\text {rel }} \ll v_{\text {esc }}$ the cross section is MUCH higher than without gravity.
Notes: Safronov number $\theta=\left(v_{\text {esc }} / v_{\text {rel }}\right)^{2}$. For 2 bodies with sizes r_{1} and r_{2} set $R_{p} \rightarrow r_{1}+r_{2}$.

2.1 Concepts: Hill sphere

Equipotential lines in the co-rotating frame

The Hill sphere (white line) is the region where the gravity of the planet (here growing planetesimal) is dominant.
It is enclosed within the two Lagrange points L_{1} and L_{2}. The Hill-Radius R_{H}, is given by

$$
\begin{equation*}
R_{\mathrm{H}}=\left(\frac{m_{p}}{3 M_{*}}\right)^{1 / 3} a_{p} \tag{5}
\end{equation*}
$$

where a_{p} is the semi-major axis of the planet.

2.1 Concepts: Three-body effects

Trajectories in 3-body problem very complex (chaotic), in particular in Hill sphere (dashed circle)
(here: Star and two planetesimals)
(Greenzweig \& Lissauer, 1993)

Gravitational focussing factor $F_{\text {grav }}$ as a function of $v_{\text {esc }} / v_{\text {rel }}$ dashed: Eq. (3)
Note: $v_{\text {esc }} / v_{\text {rel }} \gg 1$ means very thin disk: 3 -body effects limit $F_{\text {grav }}$ (solid line)
to values up to about 10^{4}.
(Lissauer, 1993)

2.1 Concepts: Modes of Growth

Two possible modes: Ordered
Mass ratio of two growing particles tends to unity

Runaway

Large particles grow faster than small ones
(Kokubo, 2001)
Consider growth of two particles with mass m_{1} and m_{2} with $m_{1}>m_{2}$

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{m_{1}}{m_{2}}\right)=\frac{m_{1}}{m_{2}}\left(\frac{1}{m_{1}} \frac{d m_{1}}{d t}-\frac{1}{m_{2}} \frac{d m_{2}}{d t}\right) \tag{6}
\end{equation*}
$$

i.e. relative growth $1 / m(d m / d t)$ is important.

If relative growth increases with m : Runaway-Growth
If relative growth decreases with m : ordered groth
Look at mass growth

2.1 Concepts: Mass Growth

Using the cross section σ (Eq. 3) the mass growth of a planetesimal with mass m_{p} is given by

$$
\begin{equation*}
\dot{m}_{p}=\rho_{\text {part }} v_{\text {rel }} \sigma=\rho_{\text {part }} V_{\text {rel }} \pi R_{p}^{2} F_{\text {grav }} \tag{7}
\end{equation*}
$$

if each collision will results in growth (100% sticking).
$\rho_{\text {part }}=$ density of incoming particles. Using

$$
\begin{equation*}
\rho_{\text {part }} \approx \frac{\Sigma_{\text {part }}}{2 H_{\text {part }}}=\frac{\Sigma_{\text {part }} \Omega_{K}}{2 v_{\text {rel }}} \tag{8}
\end{equation*}
$$

with $H_{\text {part }} \sim v_{\text {rel }} / \Omega_{K}$ and $v_{\text {rel }} \approx \sqrt{e^{2}+i^{2}} v_{K}$ (use here the velocity dispersion of the planetesimal disk)

$$
\begin{equation*}
\frac{d m_{p}}{d t}=\frac{1}{2} \Sigma_{\text {part }} \Omega_{K} \pi R_{p}^{2}\left[1+\left(\frac{v_{\text {esc }}}{v_{\text {rel }}}\right)^{2}\right] \tag{9}
\end{equation*}
$$

- Growth proportional to $\Sigma_{\text {part }}$
- Growth proportional to Ω_{K} : i.e. slower at larger distances
- $V_{\text {rel }}$ enters only through focussing factor

Note: With increasing mass the growing planet influences the velocity dispersion $\left(V_{\text {rel }}\right)$ and the surface density $\Sigma_{\text {part }}$.

2.1 Concepts: Growth Types

show two illustrative cases:

- Ordered

With $F_{\text {grav }}=$ const., and denote $m=m_{p}$ we have

$$
\begin{equation*}
\frac{1}{m} \frac{d m}{d t} \propto m^{-1 / 3} \tag{10}
\end{equation*}
$$

This implies a linear growth with radius: $R_{p} \propto t$
■ Runaway
Take now $v_{\text {rel }}=$ const. then

$$
\begin{equation*}
\frac{1}{m} \frac{d m}{d t} \propto R_{p} \propto m^{1 / 3} \tag{11}
\end{equation*}
$$

This implies $m \rightarrow \infty$ in a finite time!
Upon mass growth of a growing body velocity and density of the ambient planetesimals will be changed \Rightarrow Modifications
Look now at the growth in more detail: Results from numerical simulations
2. Growth to terrestrial planets:

Organisation

Lecture overview:

2.1 Concepts
2.2
2.3 Terrestrial planets
2.4 Water
2.5 Moon formation

2.2 Protoplanets: Methods

Direct N-Body

solve equation of motion for N planetesimals

$$
\begin{align*}
\frac{d \vec{v}_{i}}{d t} & =-G M_{\odot} \frac{\vec{x}_{i}}{\left|\vec{x}_{i}\right|^{3}}-\sum_{j \neq i}^{N} G m_{j} \frac{\vec{x}_{i}-\vec{x}_{j}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}} \\
& +\vec{f}_{\text {gas }}+\vec{f}_{c o l} \tag{12}
\end{align*}
$$

$\vec{f}_{\text {gas }}$: friction force by gas particles
$\vec{f}_{\text {col }}$: veloc. change upon collisions
The velocity dispersion of the particles $v_{\text {disp }}$ is damped by these forces.
Advantage: acurate methode
Disadvantage: need very many particles

2.2 Protoplanets: Methods

Statistical:

solve for probalility distribution function $f(\vec{r}, \vec{v})$, expressed thru $f(e, i)$ particle density $n=\int f d^{3} v$
Solve: a) Boltzmann-equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\dot{\vec{r}} \frac{\partial f}{\partial \vec{r}}+\dot{\vec{v}} \frac{\partial f}{\partial \vec{v}}=\left.\frac{\partial f}{\partial t}\right|_{\text {coll }}+\left.\frac{\partial f}{\partial t}\right|_{\mathrm{grav}} \tag{13}
\end{equation*}
$$

coll: changes by collisions
grav: grav. scattering
and b) Coagulation equation

$$
\begin{equation*}
\frac{d n_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} A_{i j} n_{i} n_{j}-n_{k} \sum_{i=1}^{\infty} A_{i k} n_{i} \tag{14}
\end{equation*}
$$

with $n_{k} \propto$ number of particles with a give size
Advantage: model total ensemble
Disadvantage: only statistical

2.2 Protoplanets: Runaway Growth I

Example N -body - simulation Planetesimals in ring at 1 AU with width $\Delta a=0.02 \mathrm{AU}$ 3000 bodies with each $m=10^{23} \mathrm{~g}$ with density $\rho=2 \mathrm{gcm}^{-3}$ at time $t=200,000 \mathrm{yrs}$:
-1 body (\bullet) with 100 initial masses
low eccentricity of \bullet :

- through dynamical friction
- small bodies have higher e
- large have smaller e

In early phase growth is through a Runaway phase

2.2 Protoplanets:

Same N-body - simulation:
dashed: $10^{5} \mathrm{yrs}$, solid: $2 \times 10^{5} \mathrm{yrs}$ objects between $10^{23}-10^{24} \mathrm{~g}$ contain majority of mass cumulative mass distribution follows: powerlaw

$$
\begin{equation*}
\frac{d n_{c}}{d m} \propto m^{\alpha} \tag{15}
\end{equation*}
$$

Here $\alpha \simeq-2.5$
($\alpha<-2.0$ is characteristical for runaway) one very massive particle (•) separated from distribution (sink)

Cumulative mass distribution $n_{c}(m)=$ number of particles with mass $>m$

2.2 Protoplanets: Gravitational Stirring

Gravitational interaction between small and big bodies
Increases mean eccentricity and inclination of small bodies
equipartition of energy between e and i gives
$<e^{2}>=4<i^{2}>$
$\langle x\rangle$: mean values
solid line e dashed line i
(E.Kokubo)

FIG. 6. The RMS eccentricity (solid curve) and inclination (dashed curve) as a function of time.

2.2 Protoplanets: Runaway Growth III

Example: Statistical simulation in box at $1 \mathrm{AU}, \Delta a=.17 \mathrm{AU}$

(Wetherill \& Stewart, 1993)

2.2 Protoplanets: Runaway Growth IV

Example: Statistical simulation, 100 radial zones, for $m>10^{24}$ discrete

306 STUART J. WEIDENSCHILLING

2.2 Protoplanets: Oligarchic Growth

Simulation results: a few massive embryos with equal spearation since N small, N -body is now more efficient continue the above N -body simulation 4000 bodies, each $m=1.5 \times 10^{23} \mathrm{~g}$ add 2 seed-protoplanets: $M_{1}=M_{2}=40 \mathrm{~m}$
at $t=0$ in $\Delta a=0.042 \mathrm{AU}$
4 times larger radii $(f=4)$
i.e. larger time scales

Result:

- large bodies grow at same speed

$$
M_{\text {end }} \approx 8 M_{\text {init }}
$$

- small grow slower, $\bar{m}\left(t=10^{4}\right) \approx 1.6 m_{\text {init }}$
- large have lower e

Self-limited runaway

 for larger M a growth of $v_{\text {disp }}$ above $M \approx 50 m: \quad v_{\text {disp }} \propto M^{1 / 3}$ the $(1 / M) d M / d t \propto \Sigma_{p} M^{-1 / 3}$$\Rightarrow$ ordered growth
(Kokubo\&Ida, 1998)

2.2 Protoplanets: End of growth - Isolation mass

Runaway is local
large bodies have \approx circular orbit \Longrightarrow limited reservoir of collision partners \Longrightarrow Isolation Mass ($M_{\text {iso }}$)
Collisions occur with bodies from Feeding Zone, i.e. from a region with extension of the Hill-radius

$$
R_{\text {Hill }}=a\left(\frac{m_{p}}{3 M_{\odot}}\right)^{1 / 3}
$$

Particles come from region Δa with mass $m=2 \pi 2 a \Delta a \Sigma_{p}$, let $\Delta a=C R_{\text {Hill }}$ with $m=M_{\text {iso }}$ we obtain

$$
\begin{equation*}
M_{\text {iso }}=4 \pi a C\left(\frac{M_{i s o}}{3 M_{\odot}}\right)^{1 / 3} a \Sigma_{p} \tag{16}
\end{equation*}
$$

detailed simulations result in $C=2 / \sqrt{3}$

2.2 Protoplanets: End of growth - Examples

Let $2 M_{\oplus}$ between 0.5 und $1.5 \mathrm{AU}, \Sigma_{p} \sim a^{-3 / 2}$ and $\Sigma_{p}=8 \mathrm{gcm}^{-3}$ at 1 AU and $C=2 / \sqrt{3}$, then

$$
\begin{equation*}
M_{i s o} \approx 0.05 M_{\oplus} \tag{17}
\end{equation*}
$$

I.e. about 40 bodies (Proto-planets) with a mean distance of $\Delta a \approx 0.025 \mathrm{AU}$ At the distance of Jupiter one gets

$$
M_{i s o} \approx 5-9 M_{\oplus}
$$

2. Growth to terrestrial planets: Organisation

Lecture overviẹw:

- 2.1 Concepts
- 2.2 Protoplanets
- 2.3
- 2.4 Wate
- 2.5 Moon formation

2.3 Terrestrial: From moons to Earth

After oligarchic phase: only few objects of \approx moon size left over Only gravitational interaction between these embyos
Approach: classical N -Body simulations
New difficulty:
few particles (≈ 100), but very long timescales ($10^{8} \mathrm{yrs}$)
\Rightarrow need good (symplectic) Integrators
Example: (Chambers, 2001)
16 N-body simulations, Start with 153-158 embryos distribute ca. 2 Earth masses between 0.3 and 2.0 AU different types: all masses equal, bimodal, radial mass profile include Jupiter \& Saturn (on present orbits) 100% sticking (perfectly inelastic) angular momentum into rotation (spin)
Integrator:
(Mercury-Package, John Chambers, 1999)

2.3 Terrestrial: Results \& Problems

Systems similar to the Solar System are possible mostly 3-4 terrestrial planets, formation in ca. $10^{8} \mathrm{yrs}$
But: Discrepancies in important details

- often no high mass concentration as in Venus and Earth
- planets have too large e and i compared to Solar System
- spin orientientations arbitrary

(Chambers, 2001); Paper I (with less particles): (Wetherill \& Chambers, 1998)

2.3 Terrestrial: New Simulations

with Jupiter (stationary) with Jupiter migration

w/ Jupiter migration (long)

Colors: Water fraction
Longterm N-body simulations about 2000 bodies at start about $10 M_{\text {Earth }}$ in [0.5, 5.0]AU (Raymond et al., 2006-2007)
Problems:

- high eccentricity
- large Mars

2.3 Terrestrial: Improvements

Too high eccentricities: Need dissipative process

- Planetesimals: left over from formation
- reservoir filled by collision
- damp e and i
- are accreted by planet in clean-up phase,
- gas disk: left over from formation
- damps e and i via tidal forces

Problem with all processes:

- Collisions of oligarchs require excentric orbits,
- but damping processes reduce e: contradiction!

Possible solution: Dynamical Shake-Up Model
(Nagasawa, Lin, Thommes; 2005, 2008)
Idea: Planets are still embedded in gas disk - e small and too few collisions
But e can be excited by secular resonances, i.e. precession of the apsidal line, $g_{\text {planet }}=d \varpi_{\text {planet }} / d t$, of the growing planet equals that of Jupiter $g_{\text {Jup }}$ (or Saturn).
then resonance condition: \Rightarrow increase of eccentricity (and more collisions) disk influence diminishes with time.

2.3 Terrestrial:

2. Growth to terrestrial planets: Organisation

Lecture overview:

- 2.1 Concepts

■ 2.2 Protoplanets
■ 2.3 Terrestrial Planets

- 2.4 Water
- 2.5 Moon formation

(World Water Day 2014, Lesley Simpson)

2.4 Water: Fraction on Earth

2.4 Water: Origin

At 1 AU , the disk temperature is above the condensation temperature \Rightarrow water is present only in gaseous from
2 basic ways to gain water:
Water condensed on embedded dust grains and is directly incorporated into the Earth
Or material directly accreted from outside (throughn in by Jupiter) see previous simulations (by Raymond ea.)
But initial Earth very hot (by collisions) \Rightarrow evaporation ?
If later deposition of water?

- Comets: Dirty snowballs
- Asteroids (see meteorites)

Here, clarification by isotopic composition of water:

- measure: D/H-ratio (Deuterium/'Protium')

Deuterium already made in big bang, later only destroyed.
Partially inconclusive results
Recent measurent: D/H identical on Earth and Vesta meteorite (Sarafian ea.
2014)

2.4 Water: D/H measurent at comet Hartley 2

(Herschel Team, ESA, 2011)
shortest distance to Earth ~ 0.13 AU = 20 Mio. km, in October 2010 In Spectrum: blue: $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ and red: HDO

2.4 Water: D/H in Solar System objects

(Herschel Team, ESA, 2011)
\Rightarrow Jupiter-type comets have D/H as the Earth, Oort-cloud-comets not (Note: D/H is particle number ratio, not mass ratio) (D/H) Earth $=0.015 \%$

2.4 Water: But: additional elements

(Marty, 2012)
Ratio: ${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$ against D / H
\Rightarrow Origin of water not complety clarified!

2. Growth to terrestrial planets:
 Organisation

Lecture overview:
 ■ 2.1 Concepts
 - 2.2 Protoplanets
 - 2.3 Terrestrial Planets
 - 2.4 Water
 - 2.5 Moon formation

(A book title, 2003)

2.5 The Moon: Change on Earth rotation (sediments)

Graphics:

Length of Day (LOD, hr)

vs. Time ($10^{9} \mathrm{yrs}$)
before 600 Mio. yrs:
(Dinosaurs)
length of day = 19-20 hrs
before 2 bil. yrs: length of day:
19-20 hrs
kink:
Continental drift?
length at beginning:
16-17 hrs
(Carlo Denis)

2.5 The Moon: Age of lunar surface

Analyses of rocks from Apollo missions

Mare: few craters, relative young
$3.1-3.8$ bil. yrs old late heavy bombardement, example basalt

Crater: 4-4.5 bil. yrs,

1. example magnesium rich
rich in olivine, pyroxene
2. example anorthosite (Feldspat Plagioklas)
radioactive age determination:
cristallisation of the magma ocean before 4.5 bil. yrs,
Age of Solar System: approx. 4.57 bil. yrs, Moon about 30-40 mio. yrs younger than Earth

2.5 The Moon: Basics of Formation

Features to explain:

- Angular momentum of Earth-Monn system (very high compared to other satellite systems)
- very iron content (low lunar density)
- late formation (30 mio. yrs after Solar System origin)

■ Oxygen isotopic composition identical to Earth
■ volatile elements have lower abundance
4 suggested formation scenarios:

- Capture
- Double planet
- Fission
- Impact

2.5 The Moon: Szenarios I

a) Capture

- not very likely
- dynamically difficult
- element abundances
b) Double planet

- inclination of Earth/Moon
- difference in density
- angular momentum

2.5 The Moon: Szenarios II

c) Fission

+ low iron abundances
+ Oxygen fraction
- neede 2.5 hrs Earth rotation
- volatile elements
d) Impact

+ density difference
+ oxygen
+ volatile elements
+ angular momentum

Impact theory: (Hartmann \& Davis, 1975; Cameron \& Ward, 1976)

- predominant theory today
- probability of impact
- need impact of mars sized body: Theia

2.5 The Moon: The impact scenario

Simulation:
Smoothed Particle Hydrodynamics
color coding:
heating of the material
Simulation time: 24 hrs ,
Earth rotation at end: 5 hrs

(Benz \& Cameron, 1986-1991)

2.5 The Moon: Lunar accretion disk

Well mixed materials in proto-lunarer accretion disk Only works well for volatile elements not for refractory but Tungsten and Titan abundances also identical (Touboul ea. 2007, Chang ea 2012) $\quad \Rightarrow$ Still problems

2.5 The Moon: Moon formation

N -body accretion simulations for moon formation

(Kokubo ea. 2000)

Unit of time:
Period at Roche limit ($a_{R}=2.9 R_{\text {ठ }}$) here about 7 hrs.
unit of length:
Roche limit a_{R}
circles:
proportional to particles size
Formation time of Moon: about 1 month

Problems:

- spreading of material
- Mass in disk
- small initial distance
- Moon initially hot (shrinking upon cooling, cracks)

2.5 The Moon: Variations of model

2.5 The Moon: Impact of large body

Smoothed Particle Hydrodynamics Simulation (300.000 particles) Two bodies with about 45 and 55% mass of todays Earth with more angular momentum (a.m.) than todays sstem
(a.m. loss by 'evection resonance')
(allows for more freedom in impact parameter)
Color coding: temperature of material (from 2000 to over 6440 K) about 3 lunar masses remain in disk around Earth \rightarrow moon formation (Canup, 2012)

2.5 The Moon: Fast rotating Earth

Smoothed Particle Hydrodynamics Simulations
Two bodies with Earth and Mars mass
with more a.m. than todays systems (Earth rotates faster)

- allows more freedom with impact parameter
(a.m. loss by 'evection resonance')
about 2-3 lunar masses remain in disk around Earth \rightarrow moon formation (Cuk \& Stewart, 2012)

The impact

Evection Resonance ($\omega_{\text {prec }}=\Omega_{\delta}$)

Still an active area of research!

