Talk Outline

• Introduction
• Mission Description
• Instruments
• Coded Mask Imaging
• Examples of INTEGRAL data
• Using INTEGRAL

INTEGRAL under Thermal Vacuum testing at ESTEC
The Gamma-ray sky before INTEGRAL

Optical

X-ray

Gamma-ray

The Comptel Gamma-ray Sky

esa
INTEGRAL is ESA’s gamma-ray observatory mission launched on 2002 October 17 on a Proton rocket. ESA led mission in collaboration with Russia and the USA.

ESA’s 2nd gamma-ray mission (COS-B, 1975), joined XMM-Newton in orbit.

SPC approved a rolling 4-year mission extension until at least 2008 December. AWG has recommended further extension up to 2010 (again to be confirmed).

Spacecraft, instruments and ground segment are all operating extremely well. Consumables for >15 years operations.

Highly eccentric 72 hour orbit. Perigee 9,000 km, apogee 150,000 km.
• Four perigee raise burn maneuvers and one apogee adjust maneuver by INTEGRAL’s on-board propulsion system

• Perigee raised from 651 km to 9050 km – important to minimize the instrumental background
INTEGRAL in a Nutshell

- 4 tonnes
- 5 m high
- 16 m span solar panels.
The Payload

- Two main gamma-ray instruments:
 - IBIS – Imager
 - SPI – Spectrometer

- Two supporting monitoring instruments:
 - JEM-X – X-ray monitor
 - OMC – Optical monitor
SPI – The gamma-ray Spectrometer on INTEGRAL.
- Excellent spectra, good images

OMC – Optical Monitor Camera.
• Fine spectroscopy of narrow lines
• Diffuse emission on > deg scales.
• 20 keV to 8 MeV
• 19 Ge detectors @ 90 K,
 \(\frac{E}{\Delta E} \sim 500 \)
• 16\ø fully coded FOV. Angular resolution 2\ø FWHM
• 1300 kg
• PI Institutes: CESR Toulouse (F) and MPE Garching (D)

IBIS – The gamma-ray Imager onboard the INTEGRAL satellite.
- Excellent Imaging, good spectra

Jem-X – The Joint European X-ray Monitor
• Accurate point source imaging and location.
• Broad lines and continuum.
• 15 keV – 10 MeV
• 16384 CdTe (ISGRI), 4096 CsI (PICsIT) detectors. \(\frac{E}{\Delta E} \sim 10 \)
• 9\ø x 9\ø degree fully coded FOV. Angular resol 12’ FWHM
• 630 kg
• PI Institutes: IAS Roma (I), CEA-Saclay (F), ITESRE –Bologna (I)

SPI
• Optical monitoring of high-energy sources
• 500 – 600 nm wavelength range
• CCD (2048 x 1024 pixels)
• 5\ø x 5\ø FOV, 20” imaging
• 17 kg
• Sensitivity: 18.2 mag in 1000 s
• PI Institute: INTA/LAEFF (Esp)

OMC
• Source identification and monitoring in X-rays
• 3 –35 keV X-ray monitoring
• Microstrip Xe gas detectors
• 5\ø degree FOV with 3’ spatial resolution
• Energy resolution of 15% at 10 keV
• 65 kg
• PI Institute: DSRI (Dk)

JEM-X
• Fine spectroscopy of narrow lines
• Accurate point source imaging and location.
• Broad lines and continuum.
• 15 keV – 10 MeV
• 16384 CdTe (ISGRI), 4096 CsI (PICsIT) detectors. \(\frac{E}{\Delta E} \sim 10 \)
• 9\ø x 9\ø degree fully coded FOV. Angular resol 12’ FWHM
• 630 kg
• PI Institutes: IAS Roma (I), CEA-Saclay (F), ITESRE –Bologna (I)
INTEGRAL fields-of-view

Fully coded fields of view:
- IBIS: 9°
- SPI: 16°
- JEM-X: 4.8°
- OMC: 5°

Dithering patterns:
- staring
 - 7 point hexagonal
- 5 × 5 rectangular
INTEGRAL 5x5 Dither Pattern

Centre of pattern (COP) = Target position, i.e. is always fixed

Step size 2°

Galactic North

Instrument axes

y

z
INTEGRAL 5x5 Modified Dither Pattern

Pointing area

COP area, 2.1° x 2.1°

Max. area, new approach
10.1° x 10.1°

Current area, 8° x 8°

COP blue cycle (# 2)

Target position = COP red cycle (#1)
Coded aperture mask imaging (SPI, IBIS and JEM-X)

IBIS off-axis Crab shadowgram

IBIS fully-coded Crab shadowgram
Coded mask imaging – some background

- Worst imaginable PSF
 - Fills detector plane for a point source ⇒ Multiple sources are normally entangled!
- Also background relevant in whole detector!
- So why bother?
 - Images in energy range too high for focusing and too low for Compton or Tracking.
 - Wide fields of view and very good angular resolution.

Best energy resolution.
Coded mask imaging – design choices

• ‘Optimum’ design with mask larger than detector and cyclically replicated mask pattern (IBIS):
 • Perfect reconstruction in Fully Coded FOV (ideally).
 • But ‘ghosts’ in Partially Coded FOV and sharp distinction between fully and partially coded.

• ‘Simple’ design with mask equal to detector size and no repetition (JEM-X comes close):
 • Reconstruction quality drops off gradually from on-axis position.
 • No ‘ghosts’ in PCFOV.

• Special design, not adapted to simple reconstruction (SPI)
 • Broad sky pixels adapted to map diffuse emission.
 • Fewer detector than sky pixels \(\Rightarrow\) requires ‘dithering’ to solve for sources.
Codesd mask imaging – reconstruction methods

- Correlation of mask pattern and detector plane.
 - Measure of similarity of shadowgram with projected mask pattern.
 - Relatively easy to implement, fast with use of FFTs.
 - Always works to produce some image.

- Backprojection of events to sky
 - Roughly equivalent to correlation methods.
 - Much faster for few photons.

- Aperture Response, Pixel Illumination Function
 - (Pre-)calculate relation between sky positions (selected or all) and detector pixels.
 - Can be very precise, but for full image either slow or huge calibration files.

- Widespread improvement: Iterative Removal of Sources
Coded mask imaging – real life issues

- Non cyclic masks
- Mask closed element absorption
- Mask open element transparency
- Mask element thickness
- Obstructions in mask plane
- Detector finite position resolution
- Detector efficiency non-uniformities
- Detector response dependent on off-axis angle
- Detector background non-uniform
- Gaps in the detector plane
- Dead/inactive pixels in the detector plane
- Shielding (collimation) imperfect
- Obstructions between detector and mask
- Leaks onto detector from far outside the fov
OMC Produces Lightcurves of Selected Objects

Credit: M. Has-Hesse
OMC Results for the recent ToO on 1A0535+262

- Larger Trigger Mode image, as source was not blacklisted and detected by IBAS.
- Long-term OMC lightcurve shows optical fading before X-ray outburst.
- Short-term lightcurve during observation shows variability of Be companion star.
INTEGRAL Status

Instrument Anomalies

- SPI detector #2 failed in 2003 December.
- SPI detector #17 failed on July 17 (2 out of 19 detectors have now failed). It is yet unclear whether both events are linked to the annealing which preceded the failures in both cases by 2-3 weeks. Investigations continue.
- To first order these reduce the SPI effective area by 2/19.
- Soon after launch it was noticed that some of the anodes of the JEM-X detectors were being damaged. This effect was minimised by lowering the HV settings. Subsequently, it was noticed that the overall gain was increasing. To keep the gain within a narrow range of values, the settings are regularly reduced.
- Subsequently, only one of the two JEM-X units is operated at any one time (except for calibration observations). Currently this is JEM-X1.
- To first order this is a sqrt(2) reduction in sensitivity.
SPI: Ge-detector energy resolution against time

<table>
<thead>
<tr>
<th>Revolution Number</th>
<th>Energy Resolution (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>882.5 keV line</td>
<td>2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65</td>
</tr>
<tr>
<td>90 K</td>
<td>ANNEALING 3 - 1 36 H</td>
</tr>
<tr>
<td>85 K</td>
<td>ANNEALING 3 - 2 36 H</td>
</tr>
<tr>
<td></td>
<td>ANNEALING 3 - 3 1</td>
</tr>
<tr>
<td></td>
<td>ANNEALING 3 - 4 12 12</td>
</tr>
<tr>
<td></td>
<td>ANNEALING 3 - 5 12 12</td>
</tr>
<tr>
<td></td>
<td>ANNEALING 3 - 6 12 12</td>
</tr>
</tbody>
</table>
INTEGRAL can observe between 50 and 130 degrees from the Sun.

In AO-1, 35% of the observing time – the Core Programme – was reserved for the INTEGRAL Science Working Team. This decreased to 30% during AO-2 and 25% thereafter.

Rest of the observing programme is open worldwide with Russian observers guaranteed 27% of the time (in return for the Proton launch).

Core Programme observations are mainly regular Galactic Scans and Galactic Center Region Deep.
Observing Programme

INTEGRAL Pointing observation plans are available on the ISOC WWW:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>366</td>
<td>2005-10-02 12:20:17</td>
<td>2005-10-12 12:00:53</td>
<td>12600</td>
<td>Galactic region</td>
<td>17453.33</td>
<td>-2856.33</td>
<td>EXE</td>
<td>Erik Knabben</td>
<td>1220198</td>
</tr>
<tr>
<td>366</td>
<td>2005-10-04 12:30:13</td>
<td>2005-10-14 12:00:56</td>
<td>8500</td>
<td>GPS</td>
<td>1947.14</td>
<td>-045857.5</td>
<td>EXE</td>
<td>Ananya Chetrapal</td>
<td>2350067</td>
</tr>
<tr>
<td>366</td>
<td>2005-10-04 12:33:18</td>
<td>2005-10-14 12:00:56</td>
<td>8500</td>
<td>GPS</td>
<td>1947.14</td>
<td>-045857.5</td>
<td>EXE</td>
<td>Ananya Chetrapal</td>
<td>2350067</td>
</tr>
<tr>
<td>366</td>
<td>2005-10-04 12:44:33</td>
<td>2005-10-14 12:00:56</td>
<td>8500</td>
<td>GPS</td>
<td>1947.14</td>
<td>-045857.5</td>
<td>EXE</td>
<td>Ananya Chetrapal</td>
<td>2350067</td>
</tr>
<tr>
<td>366</td>
<td>2005-10-04 13:00:53</td>
<td>2005-10-14 12:00:56</td>
<td>8500</td>
<td>GPS</td>
<td>1947.14</td>
<td>-045857.5</td>
<td>EXE</td>
<td>Ananya Chetrapal</td>
<td>2350067</td>
</tr>
</tbody>
</table>
Integral (up to end AO3) exposure map (IBIS/FC+PC FOV)
Applying for INTEGRAL observations

• AO-4 preparations are underway! Tentative schedule:
 • March 3rd to April 21st – Proposal submission.
 • May 30th to June 2nd – TAC Meeting.
 • Aug 17th – Start of AO-4 observations.

• Target of Opportunity observations are always possible, even without an accepted proposal – if they can be accommodated.
New Source:
IGR 16318-4848

January 2003
INTEGRAL detects highly absorbed X-ray binaries

- INTEGRAL has detected a new class of highly absorbed ($N_H > 10^{24}$) high-energy galactic sources.
- It is likely that IGR J16318-4848 is a HMXRB where the compact star is enshrouded by a thick accretion flow or stellar wind from the sgB[e] companion.
- INTEGRAL has detected a number of similar sources in the Norma arm tangent – the region with the highest OB-star formation rate in the galaxy.
INTEGRAL Map of the Central Galactic Region

ISGRI: 20–40 keV
INTEGRAL Monitoring of the Galactic Bulge
INTEGRAL 511 keV All-Sky Map

- Bulge/Disk luminosity ratio (3-9) severely constrains on principal positron source
- Bulge: Old stellar population: SN Ia + possibly Novae and/or LMXB; or possibly light Dark Matter.
- Disk: well explained by β^+ decay of 26Al and 44Ti
- No point source contribution (> 10-4 cm2/s)
- No local (?) 511 keV "annihilation fountain"
Galactic Center 511 keV Line Spectrum

- Line is unshifted ($v < \sim 30 \text{ km/s}$)
- No fast expansion ($v < 800 \text{ km/s}$)
- Brightest γ-ray line: still 2.5% of background @ 511 keV!
- INTEGRAL results most stringent constraints on temperature and ionization state of ISM: annihilation line is compatible with single-phase warm ISM.

E_0: $(510.954 \pm 0.075) \text{ keV}$
$[m_ec^2$: $510.999 \text{ keV}]$
FWHM: $(2.37 \pm 0.25) \text{ keV}$
\mathcal{P} - fraction: $(94 \pm 6)\%$
26Al line emission from the Cygnus X region

• INTEGRAL: first time precise energy determination of 1809 keV line from Cygnus region:

 \[E = 1808.4 \pm 0.3 \text{ keV}, \]

 \[\Delta E = 3.3 \pm 1.3 \text{ keV} (v_{\text{doppler}}: 550 \pm 210 \text{ km/s}) \]

• Broadening of line not due to galactic rotation (~ 10’s km/s), so do we see evidence of turbulent motions in hot superbubbles?
Cyvlotron line studies

• X0115+63 = NS + Oe9 @ 7 kpc; Outburst: Sep 2004, Pspin ~ 3.6 s
 INTEGRAL: highest resolution observation of cyclotron line ever.

• Line energy = f(phase) suggests different B-field in emission regions.
Anomalous X-ray Pulsars

- Hard spectral tails have been discovered for 4 AXP’s as a surprise: 1E1841-045; 1RXS J1708-4009; 4U0142+614; 1E2259+586.
- Unpredicted by current theory for AXP’s. Energy window (>10 keV) proves to be an important diagnostic to study magnetars.
- The hard (PL) spectral (pulsed) tails must have a magnetospheric origin, not powered by the spin-down.
- Spectra must break/bend towards CGRO energies, but still no signs of break in the 100-300 keV window.
Using INTEGRAL Data

- For a start look at what exists already, e.g.:
 - Public data archive at ISDC (with copy at ISOC)
 - “The INTEGRAL Sky” Web page at ISDC.
 - INTEGRAL Bright Source Catalog (GSFC, ISDC)
 - Galactic Bulge Monitoring pages (ISDC).
 - Accreting X-ray Pulsar Monitoring pages (Warwick, links from ISDC or ISOC).
- Select and download data, *learn to use OSA* and start ‘playing’!
- Don’t forget – there are four instruments and each one may have something interesting for you!
Finally, enjoy the Workshop!